embrane **TECHNOLOGY FORUM®**

BROUGHT TO YOU BY

Zwitterionic Membrane Process Enables High-Strength Dairy Wastewater Reuse

Presented by:

Umang Yagnik Senior Channel Growth Manager

The State of Dairy Wastewater Treatment

Common Dairy Wastewater Treatment Options

Source:

- 1. https://en.wikipedia.org/wiki/Dissolved_air_flotation
- 2. https://aosts.com/how-does-activated-sludge-wastewater-treatment-work/
- 3. https://www.biocycle.net/anaerobic-digestion-in-the-northwest/
- 4. https://home.howstuffworks.com/home-improvement/plumbing/septic-tank-cleaning.htm

Water Reuse, Good for Your Brand and Bottom Line

Achieve Sustainability Goals

- Water efficiency/conservation
- Carbon footprint (reduce hauling, chemicals, embedded energy)
- Marketing/Branding

- Reduce freshwater and wastewater costs
- Eliminate municipal surcharges (positive barrier)
- Reduce wastewater management spend (hauling, chemicals)
- Potential to valorize the concentrate (where applicable)
- High system uptime and cost-effective cleaning

Challenges Recovering Dairy Wastewater

Reuse Water Quality = Membrane / RO Treatment

Barriers to Reuse:

Elevated concentrations of fat and protein left in wastewater, usually > 100 mg/L

Unsustainable fouling on conventional membranes

High chemical cleaning cost and downtime, low productivity

Images from: The MBR Site, ESE Mag, WUR, and Hazen & Sawyer

Zwitterionic Membranes Enable Water Reuse

Advantages of Zwitterionic Membranes

Can handle feed streams up to 5% fats, oils, and grease

Clean with water flushes and mild chemical maintenance washes Are **chlorine** and high and low pH **tolerant**

Can achieve **extreme** clean water recoveries (> 90%) even in high strength organic wastewaters

Fouling Resistance in Action

Foulant removed with water Time lapse over ~30 minutes

How far can zwitterionic membranes go without irreversible fouling?

Whole Milk

Milk Solids Extraction

Skim Milk

3% wt. Whey Protein

Zwitterionic + RO Membranes Enable Water Reuse

Water Reuse Quality Achievable

Plant Reuse Locations
Cooling water
Boiler makeup
Equipment washing
Packaging washing
Floor washing
Non-potable uses (toilet flushing, irrigation, etc.)
Irrigation

Alternative to Reuse:

• Surcharge-free municipal or surface water discharge

Case Study

Project Background

Project Location: Milk and whey processing facility in Fond du Lac, WI

Project Description:

- The site discharges low strength wastewater to the sewer
- Additionally, the site generates 100,000 GPD high-strength wastewater (HSW) that gets hauled away to nearby farms & anaerobic digesters
- Close monitoring for high BOD and TSS made it infeasible to discharge to sewer
- Customer spent millions of dollars hauling high-strength dairy wastewater
- Space constrained site needed a solution with compact footprint
- Digested Organics invited to offer a treatment solution that would fit within a confined space and reduce the hauling costs

https://www.dairyindustries.com/news/37272/milk-specialties-globalbegins-lactoferrin-production/

Digested Organics Solution

- Digested Organics supplied filtration system and operates under a 20-year service contract (WaaS model)
- System processes up to 100,000 gallons per day (gpd) liquid wastewater from milk and whey processing operation
- Targets ~ 65% reduction in hauling costs and fuel emissions (Return ~35,000 gpd concentrate to MSG; discharge ~65,000 gpd to sewer)
- Solution leads to est. 21% annual savings with no upfront CAPEX investment

embrane

BROUGHT TO YOU BY

Dairv

BROUGHT TO YOU BY

American Dairy

Dairv

Process Flow Diagram

• Solution design basis

Process	Recovery
SBF	90%
SF	90%
RO	80%
Overall	65%

- No biological and / or chemical treatment
 - Physical and membrane filtration process
- Benefits of membrane system
 - Ease of operation & maintenance
 - Small footprint
- RO permeate use

ZWITTERCO

- Discharged to city sewer meeting discharge limits
- Quality fit for cooling tower, boiler feed water, washing

embrane

Maintenance Wash Information

- Maintenance Wash Cycle:
 - 1. Flush to drain with water & Clean Water Permeance test @ 50 psi
 - 2. Recirculation of 100 ppm $Cl_2 @$ pH 12 / ambient temperature for 1 hour
 - 3. Flush to drain with water & Clean Water Permeance test @ 50 psi

Full-scale Permeance Recovery

Plant Start-up Clean Water Permeance (CWP)

- Plant Start-up: Oct. 27, 2022
- CWP data points after > 7 months of operation
- Normalized to clean water permeance upon start-up in Oct. 2022
- ~ 60-70 mild maintenance wash (MW) since start-up

ZWITTERCO

Technology Forum

BROUGHT TO YOU BY

Key Learnings

	Key Learning	Recommendation	
	 Variation in wastewater characteristics High strength wastewater (HS WW) from evaporator, low strength wastewater (LS WW) from wash water/ CIP) Limited tank size (~ 50K gal) leads to process variability 	 Sufficient tank volume Allow proper blend of high strength wastewater and low strength wastewater Consistent feed water quality to the membrane system Continuous supply of wastewater to the membrane system 	
	 Temperature variance Temperature spikes (> 122°F) - wastewater straight from the feed tank (high temp. process) CIP wash water at 95°F 	 Heat Exchanger Maintain temperature of incoming feed Suitable for optimal membrane operation 	
8	 Site Location Wastewater treatment system located inside the building close to the boiler room High ambient temperature Cooling required for control panel 	Standalone buildingContainerized solution	
\mathcal{O}	 Process Integration Facility not used to continuous wastewater treatment operations 	TrainingTraining to adopt to the process changes	

Pushing the limits of spiral membranes

Daily Average SF Permeate Recovery

Stage-1 Permeate & Raw Feed

'Successfully taking trucks off the road and saving the customer money' – Kam Braxton (Project Engineering Manager, Digested Organics)

Q&A

Umang Yagnik Senior Channel Growth Manager uyagnik@zwitterco.com

PS: Are you ready for Episode-III at MTF 2024?

Appendix

Common Dairy Wastewater Treatment Options

Technology	Pros	Cons	Water Reuse Quality?
Dissolved Air Flotation (DAF)	Low CAPEXEasy installMature technology	 Frequent upsets/pass-through (surcharges) Sludge management High chemical costs Large footprint 	Νο
Aerobic Treatment / Activated Sludge	Customizability	 High electricity consumption Sludge management Bio upsets Pass-through 	Νο
Anaerobic Digestion (AD)	 Generates RNG (if captured) 	 Large footprint Not modular Bio upsets Pass-through 	No
Hauling	Low to no CAPEX	Highest OPEX	No

Technology	Pros	Cons	Water Reuse Quality?
Membrane (Zwitterionic SF + RO)	ModularityHigh effluent qualityRobustness	 Moderate CAPEX (skid, membranes) Concentrate management 	Yes
Dissolved Air Flotation (DAF)	Low CAPEXEasy installMature technology	 Frequent upsets/pass-through (surcharges) Sludge management High chemical costs Large footprint 	Νο
Aerobic Treatment / Activated Sludge	Customizability	 High electricity consumption Sludge management Bio upsets Pass-through 	Νο
Anaerobic Digestion (AD)	 Generates RNG (if captured) 	 Large footprint Not modular Bio upsets Pass-through 	Νο
Hauling	Low to no CAPEX	Highest OPEX	No
			ZWITT

BROUGHT TO YOU BY

American Dairy

The Science behind Zwitterionic Membranes

BROUGHT TO YOU BY

A New Material Chemistry

- Patented zwitterionic copolymer chemistry
- Water-loving zwitterions are combined with a strong, hydrophobic backbone
- The zwitterionic surface and pores attract water and repel organics to prevent fouling and easily regenerate upon cleaning

embrane

BROUGHT TO YOU BY

Extremely Low Fouling

Smooth Surface

Resistant to Macro-Fouling

- Net-Neutral Surface Charge No ionic interactions
- Lowest Surface Contact Angle Extremely hydrophilic

BROUGHT TO YOU BY

American Dairy

ZWITTERCO

Dairy

A Unique Superfiltration Membrane

- Superfiltration (SF) membranes are a class of membrane that falls between ultrafiltration (UF) and nanofiltration (NF)
- SF membrane characteristics:
 - MWCO of 500 3,500 Daltons
 - Lower salt rejection than NF
 - Generally used in process separations or wastewaters
 - Often have special properties (chlorinetolerance, wide pH, etc.)

embrane

Case Study

Dairy WW Bench Test vs. Standard Membrane

Dairy wastewater fouls standard membranes. A competitive UF membrane rapidly lost performance. Zwitterionic membranes recovered flux after maintenance wash and concentrated the organics by 5x.

BROUGHT TO YOU BY

Dairy WW Field Test Results

