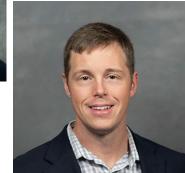
Finding the "WHY?" <u>FUNDAMENTALS OF</u> FILTRATION PROCESSING

- Steve Beckman, M.S.

Manager – Davis Dairy Plant & Institute for Dairy Ingredient Processing [IDIP] SDSU Brookings, SD

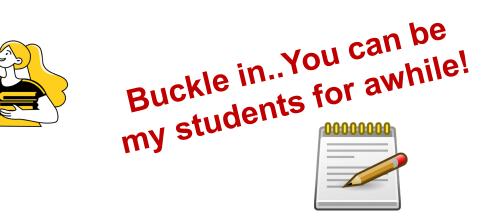
WHY ME?


- Food Science, Food Processing, Management Background (sure..mostly academic!)
- 15 years of membrane experience
- 10 years at SDSU (Ph.D. work, IDIP and Plant Manager)
- Over 150 individual pilot trials on membranes
- Various products tested on variety of formats
- Mentored many employees / students who now work in the industry at many levels

BRIEF OUTLINE

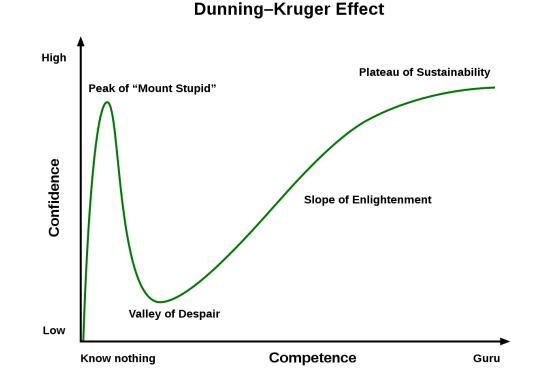
- The "Why" We're Here
 - Background
- Filtration Processing Fundamentals
 - Shared Learning
- New Fundamentals?
 - Artificial Intelligence & Membrane Processing
- Revisiting Last Year's Talk
 - Pilot Research and Student Development

WHY I'M INTERESTED IN THE "WHY"


- Not just because my 3-yo is asking it incessantly lately
- Educational Aspect
 - Student and Colleague Understanding of Topics

Conflict Resolution

- Break through impasse through mutual understanding
- Development of New Ideas
 - Generate questions
- The What comes through the Why



"WHY" THIS PRESENTATION

Why present about the fundamentals of membrane processing?

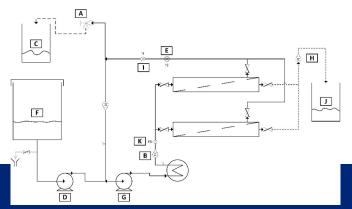
- Mutual foundation of understanding for attendees
 - Wholistic view of processes
- Give conference attendees ability to share a common vocab and understanding to better acquire knowledge from time listening
 - We are here at MTF to ask the 'WHY' of the presentations and information
- Let's dive deeper into the fundamentals...
 - Focusing on some 'why' questions I get a lot

South Dakota

BRIEF OUTLINE

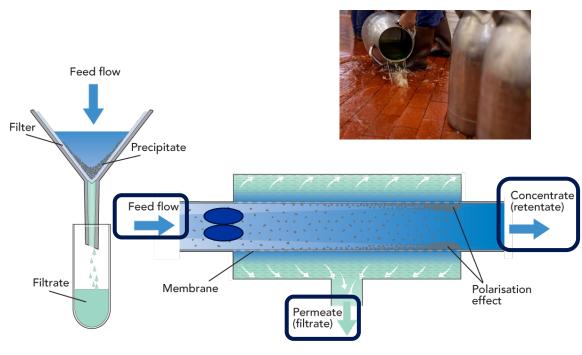
- The "Why" We're Here
 - Background
- Filtration Processing Fundamentals
 - Shared Learning
- New Fundamentals?
 - Artificial Intelligence & Membrane Processing
- Revisiting Last Year's Talk
 - Pilot Research and Student Development

FILTRATION FUNDAMENTALS


Overview Of Topics

- Shared Lexicon
 - · Let's define some common vocabulary terms
- Filtration Basics
 - Membranes & Their Characteristics
- Important Processing Variables
 - Pressure, Flow, Temperature, Time
 - Concentration Factor and Diafiltration (*common 'why' ?'s)
 - Operational Design
- Additional Considerations
 - CIP and Durability

FILTRATION FUNDAMENTALS - VOCAB


Feed

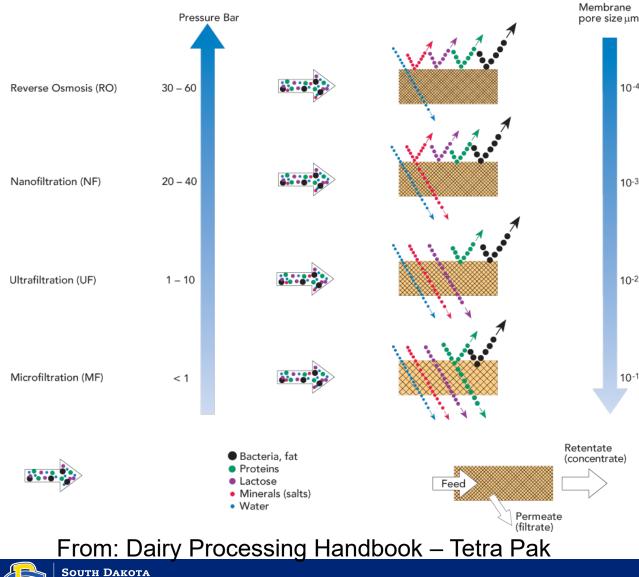
- Material or solution fed to membrane to be fractionated
- Retentate or Concentrate
 - Retained portion of Feed, after interaction with membrane
- Permeate
 - Portion of Feed that goes through membrane
- Flux
 - Permeate flow rate per unit membrane surface area (e.g., $L/m^2/h)$
- Fouling
 - Feed composition material that deposits on, or near, membrane surface
 - Reversible or irreversible
- Crossflow

South Dakota

TATE UNIVERSITY

 Tangential movement of feed/retentate across surface of membrane

From: Dairy Processing Handbook – Tetra Pak


FILTRATION FUNDAMENTALS - BASICS

10-4 - 10-3

 $10^{-3} - 10^{-2}$

10-2-10-1

10⁻¹- 10¹

TATE UNIVERSITY Department of Dairy and Food Science

Membrane

- Selectively permeable layer
- Polymer (organic), Inorganic, or combination
- Asymmetric design

Pore Size or Molecular Weight Cutoff

 Guides selection of process to use and equipment to run

FILTRATION FUNDAMENTALS - BASICS

Your Mileage Will Vary...

Membrane Composition

• Hydrophobicity, Compatability

Element Design & Construction

 Spiral-wound, Tubular (Hollow Fiber, Ceramic), Plate & Frame

D 02.7° 02.7° 02.7° 02.5°

https://doi.org/10.3390/membranes9020032

Feed Spacer

• Material, Design, Shear, Turbulence

Robustness

• Mechanical, Chemical

FILTRATION FUNDAMENTALS - VARIABLES

Trust the Process...

- Pressure
 - TMP and Pressure Drop (ΔP)
- Crossflow
 - Velocity needed, but element dictates capabilities
- Temperature
 - Impacts component solubility & viscosity
 - Microbiological issues (20h)
- Time
 - Processing time has impacts

Let's reveiw the common Why' questions I get?

Concentration Factor

- Concentration Factor = Feed_{qty} / RET_{qty}
 - Typically, said as "# x" concentration factor.
 - E.g., 100 kg Milk yields 20 kg RET; CF = 5.0x

Know your Basis

• Know what your basis is (any economists?), then calculate CF

• What is the CF based on?

Mass (lb or kg), Concentration of a component (% protein), Flowrate (gpm)
 Low about an example?

Concentration Factor – 2x Skim milk EXAMPLE (Basis)

			<u>Start with 100 kg Skim Milk</u>		
Skim Milk Composition			ULTRAFILTRATION	REVERSE OSMOSIS	
Component	Skim (%)	Permeable? (UF / RO)	- 01 2X by mass	 RO 2x by mass 100 kg / 2x = 50 kg RET with 2x protein and 2x carbohydrates 	
Water	90.5%	Y / Y	 100 kg / 2x = 50 kg RET with 2x protein and 1x 		
Carbohydrates	5.0%	Y / N	carbohydrates		
Protein	3.5%	N / N	• UF RET	 RO RET 	
Minerals / Ash	0.9%	Y / N			
Fat	0.1%	N / N	 Protein = 7.0% Carbs = 5.0% 	 Protein = 7.0% Carbs = 10.0% 	
			• Carbs – 5.0 %	• Carbs - 10.0 %	

*Need shared understanding of component of interest

Concentration Factor - Permeability

- "Permeable" Components & CF Basis
 - One of most difficult for me to learn was about mass balance and how determining which component of interest is being concentrated

		Permeable?			
Component	(%) wt/wt	MF	UF	NF	RO
Water	90.5%	Y	Y	Y	Y
Carbohydrates	5.0%	Y	Y	Y & N	Ν
Protein	3.5%	Y & N	Ν	Ν	Ν
Minerals / Ash	0.9%	Y	Y	Y & N	Ν
Fat	0.1%	Ν	Ν	Ν	Ν

Next: Permeability and Diafiltration

Diafiltration (DF) - Overview

Purification of RET

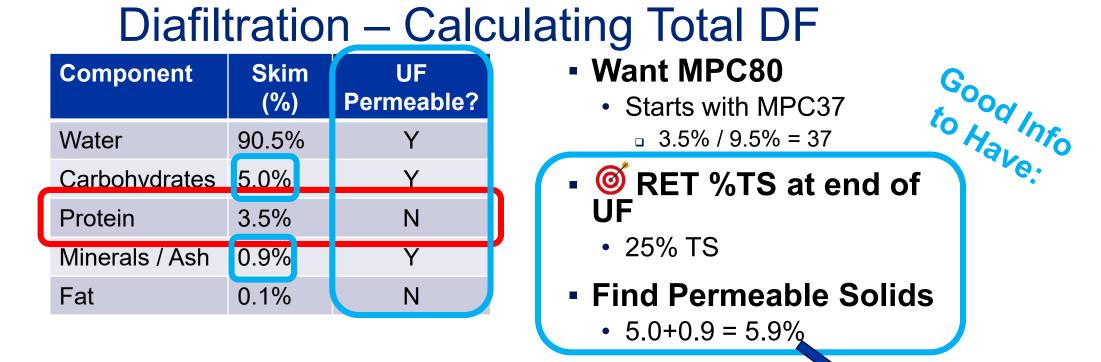
- Washes out permeable components
- Common diluent = Water. Others include downstream permeates or buffers.

Know your Basis

- DF on feed? DF on retentate stage?
- Location of DF in process impacts process efficiency (mass, physical properties)

Examples

- Where DF is added in the process
- Basic DF calculation in UF Skim milk


Diafiltration – Basis for Clarity

Add 100 kg of DF Water

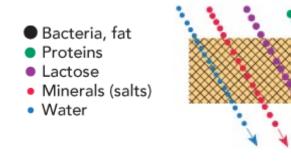
Component	Skim	2x UF Skim	IF ADD TO SKIM:	IF ADD TO 2X UF SKIM:
	(%)	(%)	 Before UF 	• After stage 2 of UF
Water	90.5%	86.9		- Aller Slage Z UI UI
Carbohydrates	5.0%	5.0%	 100% DF on 	100% DF on Feed
Protein	3.5%	7.0%	Feed Basis	Basis, or 200% DF
Minerals / Ash	0.9%	0.9%		on stage Basis
Fat	0.1%	0.2%		
Total Solids	9.5%	13.1%	 MPC Purity: 	MPC Purity:
Mass (kg)	100 kg	50 kg		

Be clear what basis for DF addition you're working with

- MPC80 @25%TS = 0.8*25 = target 20% Protein in RET

- 25% 20% = 5% *this is what we have to reduce Permeable Solids to (5.9->5.0)
- -[(5.9 / 5.0) 1] * 100% = 18% (wt/wt) water added to quantity to reduce PS
- Add calculated water, then UF to final RET %TS (25%)

FILTRATION FUNDAMENTALS - VARIABLES


Diafiltration – "Permeable Solids" Explainer

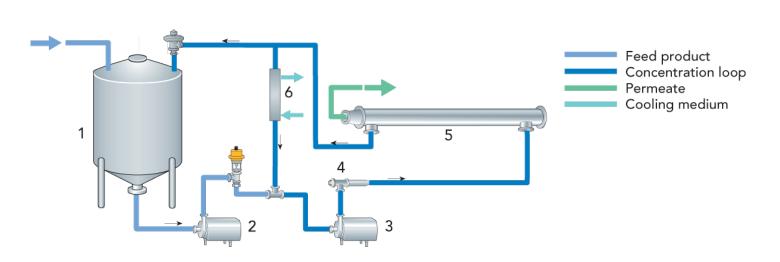
Permeable Solids

Components in Feed that can freely pass through membrane selective layer

BIG ASSUMPTION (for calculation purposes)

- For permeable solids: Concentration (%) of component will be equal on RET and PERM side of membrane
 - E.g., Lactose @ 5% during UF of milk

FILTRATION FUNDAMENTALS - VARIABLES


Other Processing Variables - Operational Design

Batch

- Reduced Capacity
- True Batch, Fed Batch
- Manual Diafiltration

Continuous

- Stage Designs
- Higher Throughput
- Inline Diafiltration capabilities

FILTRATION FUNDAMENTALS - LONGEVITY

Membrane Processing - Additional Considerations

- Cleaning of Membranes and Systems
 - Water & Chemical Use
 - Time needed
 - Safety & Sanitation
 - Equipment design can be more important than membrane selection, as far as safety and sanitation

Durability

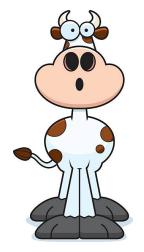
Materials

Search for CI (continuous improvement)

• Industry, and membrane process specific

BRIEF OUTLINE

- The "Why" We're Here
 - Background
- Filtration Processing Fundamentals
 - Shared Learning
- New Fundamentals?
 - Artificial Intelligence & Membrane Processing
- Revisiting Last Year's Talk
 - Pilot Research and Student Development



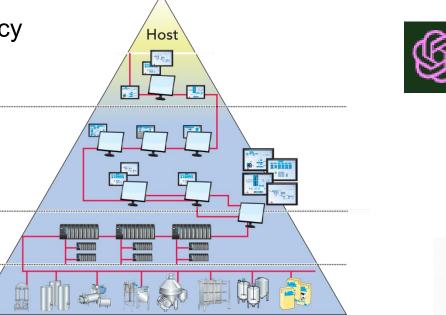
SWITCHING GEARS - WHY THE AI?

AI – Change Agent

• What is AI?

- Artificial Intelligence = Computer systems able to perform tasks that normally require human intelligence
- Essentially a computer that can rapidly access available data to formulate an answer
- Why Should I Care?
 - Embrace the change
 - Rapid development and dissemination of AI is already changing our daily lives

Al's Impact on Our Industry? – Let's Ask

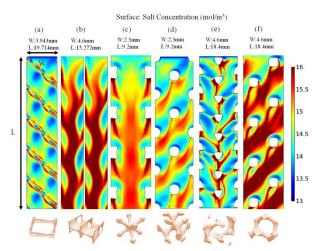


WHY THE AI? That's What ChatGPT Said....

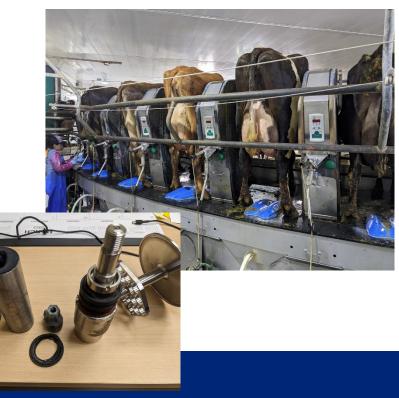
2

• How will AI change membrane filtration for food processing?

- Optimization & Efficiency
 - Analyzing real-time data to adjust for efficiency
- Predictive Maintenance
 - Monitor system, and suggest maintenance1
- Quality Control
 - Safety and Quality
- Process Monitoring
 - Can alert humans if out-of-spec alert
- Adaptive Filtration
 - Adjust based on selected factors
- Data-Driven Decision Making
 - Find correlations and trends not readily apparent to human operators


WHY THE AI? The Time Machine

• What's Next With AI?


- Membrane and Equipment Construction & Design (e.g., CFD)
- Membrane Processing Research and Empirical Data
- Associated industries (e.g., farming, dairy production, waste mitigation)

Caution Ahead

- Dependent on measurement of, and access to, data
- Still need humans
- Who/what determines if AI suggestion is correct?
- Good questions and training data for accuracy

https://doi.org/10.3390/separations9030062

BRIEF OUTLINE

- The "Why" We're Here
 - Background
- Filtration Processing Fundamentals
 - Shared Learning
- New Fundamentals?
 - Artificial Intelligence & Membrane Processing
- Revisiting Last Year's Talk
 - Pilot Research and Student Development

REVISITING MTF22 (BRIEFLY)

Pilot Trials for Membrane Research

- Six P's of Pilot Planning
- K.I.S.S. (Keep It Simple, Silly)
- Recruiting New Students
 - Labor Challenges Continue
 - Value Model of Education
 - Keep Getting Hands-On

Let's Get to Work!

Six P's for Pilot Trials, and Recruiting for

Steve Beckman, M.S.

SOUTH DAKOTA STATE UNIVERSITY Department of Dairy and Food Science

WRAP-UP: BIG PICTURE Key Takeaways

- Learn and Teach the "Why"
- Have a common vocabulary, even if you have to make it up
- Potential impacts of Al in our industry
- K.I.S.S.
- Keep reaching out to prospective students

THIS IS MY WHY...

Steve Beckman

steven.beckman@sdstate.edu

(605) 688-5480

SOUTH DAKOTA STATE UNIVERSITY Department of Dairy and Food Science

THANKS FOR YOUR TIME!

"Tell me and I forget. Teach me and I remember. Involve me and I learn" – Benjamin Franklin

"I have no special talent. I am only passionately curious" – Albert Einstein

