MBR Operations DAIRY WASTEWATER APPLICATIONS

JOANNA HODGSON

Mechanical Engineer The Probst Group

Wastewater TREATMENT TECHNOLOGIES

WASTEWATER TREATMENT OVERVIEW

WASTEWATER

BIOREACTOR

SOLIDS/LIQUIDS SEPARATION (SLS)

TREATED EFFLUENT

COMMONLY APPLIED WASTEWATER TREATMENT TECHNOLOGIES

ANAEROBIC

- Bulk Volume Fermenter (BVF)
- Upflow Anaerobic Sludge Blanket (UASB)
- Complete Mix Reactor (CSTR)
 - Gravity Clarifier
 - DAF/Centrifuge/Screen
 - UF Anaerobic MBR

AEROBIC

- Conventional Activated Sludge
- Sequencing Bioreactor (SBR)

Anaerobic PROCESS COMPARISON

BULK VOLUME FERMENTER (BVF) UPFLOW
ANAEROBIC
SLUDGE BLANKET
(UASB)

COMPLETE MIX
WITH
GRAVITY SLS

ANAEROBIC MEMBRANE BIOREACTOR (ANMBR)

BULK VOLUME ERMENTER (BVF) **70-80%** ENERGY CAPTURE

10-30% COD TO EFFLUENT

ANAEROBIC MEMBRANE BIOREACTOR (MBR)

70-80% ENERGY CAPTURE

10-30% COD TO EFFLUENT

ANAEROBIC MEMBRANE

(MBR)

BIOREACTOR

5-10% COD TO EFFLUENT

70-80% ENERGY CAPTURE

10-30% COD TO EFFLUENT

COMPLETE MIX WITH **GRAVITY SLS**

95% **ENERGY CAPTURE**

>90% **TSS** CAPTURE

ANAEROBIC MEMBRANE **BIOREACTOR (MBR)** 70-80% **ENERGY CAPTURE**

10-30% COD TO **EFFLUENT**

Aerobic PROCESS COMPARISON

SEQUENCING BATCH REACTOR (SBR) COMPLETE MIX
WITH GRAVITY
SLS

AEROBIC MEMBRANE BIOREACTOR (MBR)

Case Studies

- NEED FOR ADDITIONAL HYDRAULIC CAPACITY
- EFFLUENT DAF POLISHING
- INCREASED LOADING CAPACITY

CONVERTING SBR SYSTEM TO AEROBIC MBR

FLOW 500,000 – 800,000 gpd

BOD (AVERAGE) <1.0 MG/L

TSS (AVERAGE) <1.0 MG/L

FLUX RATE >200 LMH

ENERGY USE 8.1 KWH/1000 GAL @

\$0.10/KWH = \$0.81/1000

GAL = \$0.00081/GAL

- ALL PROCESS WW WAS HAULED OFF TO LOCAL MUNICIPALITIES
- HIGH DISPOSAL COST
- LIMITED ABILITY TO INCREASE PRODUCTION AND REDUCE WHEY TRANSPORT COSTS

- CONSTRUCTING & MANAGING THEIR OWN WWTP
- AEROBIC MBR WITH UF MEMBRANES AND AN ANOXIC SELECTOR TANK FOR EBPR

FLOW 150,000 – 350,000 gpd

BOD (AVERAGE) <1.0 MG/L

TSS (AVERAGE) <1.0 MG/L

TP 0.05 MG/L

AMMONIA <1.0 MG/L +/-

FLUX RATE >200 LMH

ENERGY USE 8.1 KWH/1000 GAL @

\$0.10/KWH = \$0.81/1000

GAL = \$0.00081/GAL

- DIFFICULTIES WITH LAND APPLICATION
- STRICT SURFACE WATER DISCHARGE REQUIREMENTS

- NEW BUILD WWTP
- AEROBIC MBR
- WATER QUALITY TRADING

FLOW 75,000 gpd

BOD (AVERAGE) <2.0 MG/L W/ NCCW

TSS (AVERAGE) <2.0 MG/L

TP 0.3 MG/L

FLUX RATE 100 LMH +/-

ENERGY USE 8.6 KWH/1000 GAL @

\$0.10/KW = \$0.86/1000

GAL = \$0.00086/GAL

- INADEQUATE MUNICIPAL TREATMENT PLANT
- COMPLIANCE WITH STRICT DISCHARGE LIMITS

 DESIGN & BUILD NEW WWTP TO EFFECTIVELY TREAT WW FROM ALL PRODUCTION FACILITIES

FLOW >300,000 GPD

COD IN 50,000-70,000 MG/L

COD OUT 200 MG/L (300 LBS/DAY)

P IN 400 MG/L

POUT 50 MG/L

99.5% COD REDUCTION 85% P REDUCTION

- INCREASED PRODUCTION & HIGH-STRENGTH WASTEWATER
- INADEQUATE RIDGE AND FURROW SYSTEM
- LONG TERM SOLUTION NEEDED

- NEW CONSTRUCTION AEROBIC AND ANAEROBIC WWTP
- ANAEROBIC MBR
 PRETREATMENT FOR
 HSW
- AEROBIC AS TREATMENT WITH EBPR

FLOW 50,000 GPD

COD IN >30,000 MG/L

COD OUT 550 MG/L

MORE THAN 98% COD REDUCTION

COMMON UF SYSTEM CHALLENGES & REMEDIES

MEMBRANE FOULING

CONTAMINATE BUILD UP ON MEMBRANE SURFACE

As membranes filter the wastewater, fouling occurs naturally

SIGNS SYMPTOMS

- Permeate rate decreases
- System pressures increase

REMEDIES

- Physical cleaning like forward flush
- Chemical cleaning
- Optimize operations

MEMBRANE FOULING

THREE PRIMARY FORMS OF FOULING

SCALING

Crystallization of inorganic salts on membrane surface

Blocked pores, flux decline, membrane degradation, production loss

Acidic washes

Nitric Acid targets precipitated salts & mineral deposits. Citric Acid targets metal oxides and carbonate scales

CAKE LAYER FORMATION

Accumulated particles that form fouling layer on membrane surface

Blocked pores, flux decline, membrane degradation, production loss

Acidic/Caustic washes at high temperatures

BIOFOULING

Microorganisms adhere to membrane surface creating a film

Increased flow resistance
Acts as additional barrier to permeation

Caustic washes with sodium hypochlorite

MEMBRANE PLUGGING

MEMBRANE TUBES ARE BLOGGED

Biomass & other solids preventing feed water from passing through

SIGNS SYMPTOMS

- Pressure Increase across the module
- Loss of flow

REMEDIES

Can only be corrected by manually cleaning each membrane by hand

MEMBRANE PLUGGING

WHAT CAUSES PLUGGING?

- High FOG in bioreactor
- High TSS in feed water (20,000mg/L +)
- Improper straining
- Continuous operation at low crossflow velocities
- Failure to flush system after stopping filtration
- Poor biological activity in bioreactor
- Failure to perform proper cleaning protocols

AVOIDING MEMBRANE PLUGGING

THANKYOU QUESTIONS?

JOANNA HODGSON
Mechanical Engineer
The Probst Group

