

Session #6 Wastewater 3:55 – 4:25 PM, June 14, 2023

Advancement in Minimum & Zero Liquid Discharge

Devesh Mittal Vice President of Environmental Services, Aquatech

- Established: 1981 Headquarters: Canonsburg, PA, USA
- Diverse portfolio of technology & services for the industrial & infrastructure markets
- Pioneer in Zero Liquid Discharge ("ZLD") and Brine Management
- One of few companies in the world with Thermal & Membrane
 Desalination capabilities
- Delivering turnkey business solutions EPC, mobile, rental, and BOO

Why MLD or ZLD?

Key reasons

- Regulatory limitations on surface or POTW discharge
- Cost drivers
 - Water paucity
 - High round trip cost of water
- Water conservation initiatives

Benefit needs to be greater than cost because

- Expensive to build
- Complex and costly to operate
- Restrictive, becomes extension of manufacturing process

Definition of MLD and ZLD

MLD

Minimum or Modified liquid discharge
 Limited by quantity and or quality of discharge
 Recovered water to limit discharge can be reused
 Generates liquid concentrate for disposal

ZLD

Zero liquid discharge

Must have ability to reuse the recovered water

Generates solid cake for disposal and minimal liquid concentrate

Traditional MLD / ZLD

Pre-Concentration

Concentration

Crystallization

Zones Of Complexity

How The Membranes Help?

Capex Reduction

- Relatively cost effective per gallon water recovered
- Installed sparing capacity feasible
- Modular and expandable allowing phased build
- Construction schedules significantly shorter
- Install costs significantly lower

Opex Reduction

- Easier to operate and operations better understood
- Energy consumption significantly lower
- Component replacements relatively inexpensive

Membranes / Systems Used in MLD/ZLD

ARRO™

FTSH₂O OARO

AVMD[™]

MBR

Membranes Are Doing The Heavy Lifting

FO and OARO As Concentrators

- Minimal Pretreatment for most wastewaters (bag filter)
- Higher Recoveries 90% to 95%
- Ideal for ZLD especially where the crystallizer is the mostly costly step
- Full recovery from feed upsets
 - Low pumping pressures of 1 bar does not imbed solids or abrade membrane surface
 - Most times, simple osmotic
 backwashing and flushing with just
 water is sufficient
- Great process for water mass transfer
- High water purity, from both the FO and HBCR – multiple passes

AVMD™As Concentrator

- Advanced Vacuum Membrane
 Distillation modules consist of specialized hydrophobic
 membrane envelopes.
- A vacuum is created to pull water vapor across the membranes
- Allows use of waste heat as energy source
- Cost effective for small and modular ZLD unit

Soya Facility

- Source of effluent: Soyabean Milling
- Project features:
 - 200 gpm (1,090 m3/day) feed flow
 - 98% water recovery

Project scope: Recycle for reuse & ZLD

Simple case for dairy (1/2)

Source of effluent: milk processing

Plant capacity:

- 185 gpm (1000 m3/day)
- COD 2000 ppm
- TDS 1500 ppm
- Project scope: wastewater treatment, recycle and ZLD
 Stage Wise Parameters

Sr. No.	Parameters	Inlet	After EGSB	After MBBR	After UF, ARRO	After AVMD, ATFD
1	Flow, m3/day	1000			880 + 90 = 970	
2	Fat and Grease, ppm	500	-	<10	-	
3	TSS, ppm	1000	-	<100	-	-
4	COD, ppm	2000	400 (80% reduction)	60 (85% reduction)	Nil	Nil
5	BOD, ppm	1000	200 (80% reduction)	30 (85% reduction)	Nil	Nil
6	TDS, ppm	1500	-	-	<100	<200

Simple case for dairy (2/2)

BioMOD[™] (DAF+EGSB+MBBR)

VALUE PROPOSITION

✤ Key enabler to achieve sustainability goals.

- BioMOD EGSB degrades BOD & COD with no power consumption and also generates **GREEN ENERGY** through methane production.
 - R3MOD ARRO technology recycle/recover > 90% of water, which can be used in cooling tower/ process.

R3MOD AVMD technology helps achieve ZLD requirement with Lower Opex.

Takeaways from today

- Membranes have lowered the cost footprint of MLD/ZLD
- ◆ FO, OARO and AVMD[™] have started to replace conventional brine concentrators and crystallizers
- Membranes have allowed modular systems for smaller flows
- Waste minimization is cost and operation burden
- Explore all alternate options before implementing program

CONTACT CORPORATE: Devesh Mittal

website www.aquatech.com/

