The Science Behind Cleaning

Caleb Power – Exec Area Technical Support Coordinator

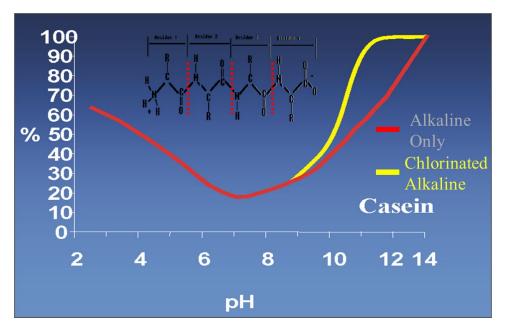
June 2023

ECOLAB

Agenda

- Overview of chemistry vs soil
- Deeper dive into chemistry
 - Alkaline detergents
 - Surfactants
 - Acids
 - Enzymes
- Question

Overview of Chemistry vs. Soil


Product	Fat	Protein	Carbohydrate	Minerals	Microbial
Alkaline (Ultrasil 10, Ultrasil 11, Ultrasil 110, Ultrasil 91, Ultrasil 131, Ultrasil 22, Ultrasil 25)	Х	Х	Х		
Acid (Ultrasil 75, Ultrasil 76, Ultrasil 78)				Х	
Enzyme (Ultrasil 63, Ultrasil 67)		Х			
Surfactant Additives (Ultrasil 02, Ultrasil 09, Ultrasil 83, Ultrasil 84)	Х				
Oxidizers (Ultrasil OP, XY-12)		Х			
Soak/Preservative (Ultrasil MP, Ultrasil 205)					Х
Anti-Microbial (Oxonia Active)					Х

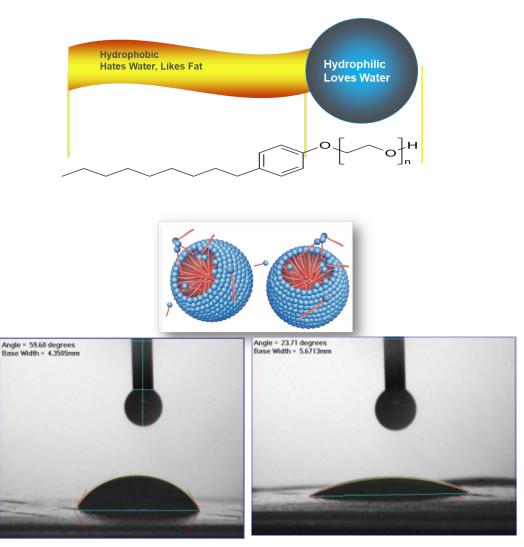
Alkaline Detergents

Notes on Alkaline Detergents

- Choosing the right alkaline product is important.
- Caustic an react with Calcium tying up the cleaning power
- Builder in built caustics will tie up the Ca so it does not react with the caustic
- It is better to clean protein on the alkaline side due to isoelectric point.
- Chlorine can be added to increase solubility of proteins

ECOLAB

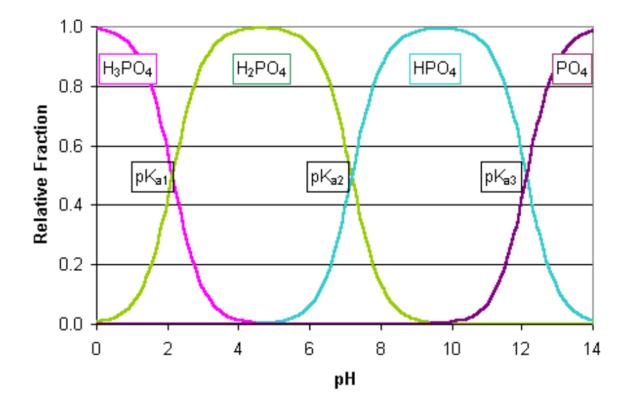
Alkaline Detergents



Surfactants

Two main functions.

- 1. Fat removal
 - The removal of fat is more difficult on a hydrophobic surface such as an organic polymer compared to that of a stainless-steel surface.
 - The hydrophobic character of the fat molecule allows it to absorb to the membrane surface.
 - Due to high melting points surfactants are used which emulsify that fat into the cleaning solutions which is then flushed to drain.
- 2. Wetting
 - Surfactants also help wet the membrane and get cleaning solution to the small crevices within a system.
 - Helps membrane to be more hydrophilic and not hydrophobic

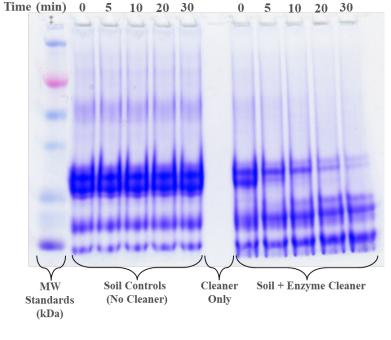

DI water Contact Angle=59.60 **Poor wetting**

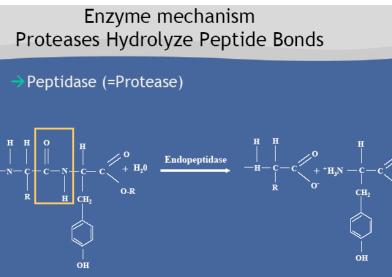
Current Product Contact Angle=23.71 Good wetting

ECOLAB

Acid Detergents

- Use of Acid to dissolve the minerals deposited on the membrane surface.
- Maintain pH during the wash step if unable to maintain dose back into proper pH range or dump and refresh solution.
- Calcium Phosphate $(Ca_3(PO_4)_2) 310$ Da
- Reverse solubility, e.g. hotter solution results in precipitation
- Solubility greatest at pH < 2.1


Acid Detergents



Enzyme Detergents

- Biological catalysts little goes long way
- Active on many types of proteins
- Does not degrade a membrane like chlorine does
- Requires specific temperature and pH for optimum activity
- Readily deactivated by chlorine

Enzyme Detergents

ECSLAB® PROTECTING WHAT'S VITAL[®]