

ENGINEERING YOUR SPRAY SOLUTION

Precision Spray Nozzles and Accessories Edition 501

OUR CORE PRODUCT LINES: BEST VALUE, PRECISION, RELIABILITY, QUICK DELIVERY.

INCREASE YOUR PRODUCTIVITY WITH LECHLER SPRAY TECHNOLOGY

Competition is getting fiercer by the day. Your customers' requests for the highest quality and lowest price force you to seek creative solutions. Lechler spray technology can be part of those solutions by helping you improve your manufacturing processes and technologies.

For further information on nozzle technology, please

visit www.lechlerusa.com.

What really matters is that you have a competent partner for the job right from the planning stage. We supply vital measuring data from the beginning to ensure your process runs smoothly. With so many nozzle options to choose from, we can offer you a customized spray solution.

Opting for an experienced partner like Lechler provides you with: a broad product line, unmatched quality, international engineering expertise, and delivery of most catalog items straight off our stock shelves. Is that what you expect from a nozzle supplier? You can expect that from Lechler.

This Lechler Catalog 501 is a reference book designed to assist you with the solutions to your spray application needs. It provides detailed information about our standard product line along with the types of

applications for which those products are typically used. Not only is there a complete section of nozzle accessories included but you will also find the nozzle products with which those accessories were designed to operate. Additional catalog help comes from a full list of engineering data, assistance in designing your own spray header, and information to help you choose a tank cleaning product. All in all, this catalog is designed to assist you in making product choices for your spray applications.

Don't feel like you're in this alone. For expert assistance in finding the solution to whatever spray application you may have, we invite you to contact your local representative or Lechler directly. When you partner with Lechler, you're backed by over 130 years of spray technology experience, experience borne from hundreds of applications at thousands of companies around the world. Let us put that experience to work for you.

Index of parts by nozzle series

Nozzle Series Description Page Accessories. .. 127-139 Part numbers starting with 061, 065, 066, 090, 091, 092, 095 013AirMist Accessories 017ViscoMist Replacement Kits60 057Gyro Tank Cleaner Replacement Kits......41 099Screens for Trimming Nozzles116 10.xxx.....STAMM® Linear Oscillators......150-151 136.1AirMist, Internal Mix, Full Cone......47 176......56-60 2TRAxial Hollow Cone, Tip......68 373Ramp Bottom Hollow Cone......71 419Axial Full Cone 79 422/423 Vaneless Full Cone, Plastic83 459... 468......Axial Full Cone, Tip......81 500.234.....PicoWhirly 26 502/503Cluster Head Full Cone85 540/541Air or Saturated Cluster Solid Stream Nozzle......127 544Solid Stream Nozzles, Threaded113 544Air or Saturated Solid Stream Nozzle.....126 546/548/550.....High Pressure Solid Stream Nozzle.....114 564Easy Flush......107 599.009/599.028.....Needle Jet Nozzles......117 599.040.....High Pressure Solid Stream Nozzle.....115 599.128......Trimming Nozzles......116 5P2/5P3.....PopUp Whirly..... 29 5TMHigh Impact Tank Cleaning Machine42 600 WHISPERBLAST, Air Nozzle 121-123 656/657Roto Fan Flat Fan Tip98-99 676Easy Clip Assembly......108 679......Blow Off Nozzle Tip......124 684..... Deflector Wide Angle Flat Fan, Tip...... 105 686 Deflector Wide Angle Flat Fan, Tip....... 106

688/689 Impactor Flat Fan...... 104

1	Introduction	2
e	Engineering data	10
	Tank cleaning nozzles	19
	Pneumatic atomizing nozzles	46
	Hollow cone nozzles	64
	Full cone nozzles	74
	Flat fan nozzles	90
]	Solid stream nozzles	112
	Air nozzles	120
	Accessories	130
	Lances and nozzle headers	144

TABLE OF CONTENTS

www.LechlerUSA.com

LETHLER

Page

TERMS OF EXPLANATION

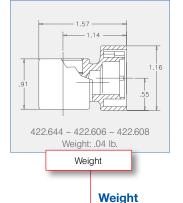
Here you will find explanations of the special terms and abbreviations used in the tables on the following pages.

Lechler nozzles are manufactured with the highest precision and undergo numerous quality checks. Nevertheless, productionrelated tolerances can affect the spray angle, flow rate, droplet size, and droplet distribution of the nozzle's performance.

Equivalent

orifice diameter Applies to elliptical discharge holes of flat fan nozzles. A cylindrical hole with the listed diameter has the same surface area as the ellipse. Otherwise, for full cones and solid streams, the orifice diameter simply is a measure of the diameter of the round nozzle orifice.

Free passage Diameter size of the largest particle which can successfully pass through the nozzle. Can be less than the orifice diameter on certain nozzles due to the presence of internal swirl inserts.


Flow rate All volume flow rate data in this catalog is based upon measurements with water.

Spray width Spray widths listed as theoretical are based upon table values for a given spray height and spray angle. Otherwise spray widths are actual, based upon empirical testing.

										Equivalent Orifice diam.	passage			Flov (Gallons	w Rate Per Mir	nute)			Theoret Spray W	
e			(Order	ing n	0.				qi	as		L		ons Per IVI	· · ·				
angle	Туре		Mate	rial no	э.	Connection				Se is		-		(indic)		-		y Width in.)
Spray		SS E00 16	ss 916 17	Brass 30	JOVA 5E	1/8"	Male 1/4"	NPT ³ /8"	1/2"	Orifi	Free (.ui)	10 psi	20 psi	litres per minute 2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	
15°	632.301	0	0	0	0	BA	BC	BE	-	.028	.024	.05	.07	.32	.10	.12	.14	.16	3	6
	632.361				0	BA	BC	-		.039	.032	.10	.14	.63	.20	.24	.28	.31	3	6
	632.401	0	0	0	-	BA	BC	-	-	.047	.035	.16	.22	1.0	.31	.38	.44	.49	3	6
	632.441	0			0	BA	BC	-	-	.053	.043	.19	.27	1.3	.39	.48	.55	.61	3	6
	632.481				0	BA	BC	-	-	.059	.047	.25	.35	1.6	.50	.61	.70	.78	3	6
	632.511	0	0	0		BA	BC*	-	-	.065	.055	.29	.42	1.9	.59	.72	.83	.93	3	6
	632.561				-	BA	BC*	× -	-	.079	.059	.25	.35	1.6	.50	.61	.70	.78	3	6
	632.601				-	BA	BC*	** =	-	.087	.067	.49	.69	3.2	.98	1.2	1.4	1.5	3	6
	632.671				-	-	BC	BE	-	.106	.087	.74	1.0	4.8	1.5	1.8	2.1	2.3	3	6
	632.721				-	-	BC	BE	-	.118	.098	.98	1.4	6.3	2.0	2.4	2.8	3.1	3	6
	632.801				-	-	BC	BE	-	.157	.126	1.6	2.2	10.0	3.1	3.8	4.4	4.9	3	6
	632.841				-	-	BC	BE	-	.177	.142	1.9	2.7	12.5	3.9	4.8	5.5	6.1		6
	632.881				-	-	BC	BE	BG									7.9		6
	632.921						BC	BE										9.8		
	632.941																	11.0		
																		12.3		
																		16.4		
																		19.6		
																		24.5	3	6
																		2		

age Ë

٦г

factors for other

materials.

2

	ang	Туре	Ma	terial	no.			Conr	ectior	٦		-9	pass				(0.0						(in.) @	2 30 psi
14	Spray a		316 SS	Brass	PVDF			Male	e NPT			Orifice	Free p	10	20	litres per minute 2	30	40	60	I 80	l 100	150		Ţ
	0)		17	30	5E	1/8"	1/4"	3/8"	1/2"	3/4"	1"	(in.)	(in.)	F	-			psi	psi	psi	psi	psi	H=8"	H=20"
	45°	460, 403	0	0		BA	-	-				.047	.033	-	Pres	ssure		.30	.35	.40	.43	.51	6	16
1.16		460. 523	ŏ	ŏ	-	BA	-	-	-	-	-	.059	.053	.35	.46	2.0	.54	.60	.71	.79	.87	1.0	6	16
		460.603			-	-	BC	BE	-	-	-	.075	.071	.54	.72	3.2	.84	.95	1.1	1.2	1.4	1.6	6	16
		460.643	0	0	-	-	BC	BE	-	-	-	.085	.079	.69	.91	4.0	1.1	1.2	1.4	1.6	1.7	2.0	6	16
.55		460.683	0.64	۱ <u>۰</u>	-	-	BC	BE	-	-	-	.095	.079	.86	1.1	5.0	1.3	1.5	1.8	2.0	2.2	2.5	6	16
		460.703	-		-		-	BE	-	-	-	.100	.087	.97	1.3	5.6	1.5	1.7	2.0	2.2	2.4	2.9	6	16
		460.723 460.783			-		-	BE	BG	-	-	.106 .126	.093 .126	1.1 1.6	1.4	6.3 9.0	1.7 2.4	1.9 2.7	2.2	2.5	2.7 3.9	3.2 4.6	6	16 16
		460. 803					-		BG			.120		1.7	2.3	10.0	2.4	3.0	3.5	4.0	4.3	5.1	6	16
606 - 422.608		460.843	-		-		-	-	BG	-	-	.150			2.8	12.5	3.3	3.8	4.4	5.0	5.4	6.4	6	16
.04 lb.	60°	460.404			-	BA	-	-	-	-					.23	1.0								
.0110.		460.444				BA										1.3								
pht																1.6								
																² Pr	essu	re (ii	n psi	.79				
																C.U					tial			
																1.0			he di					
Weight																pre	essur	e to t	the no	ozzle				
All weight inform	natio	n														SU	roun	dina	. If yo	u rec	uire	а		
0																		<u> </u>			•			
refers to nozzles	-																		ge no	•				
made of brass,	unle	SS														the	e table	es, vo	ou ca	n cal	culat	te		
otherwise stated	1 50	۵																	low r					
page 16 for con	ivers	ion														de	sired	pres	sure	with	the			
factors for other																for	mula	ot th	o hot	tom	of the	`		

Ordering no.

angle

formula at the bottom of the respective table page.

Flow Rate (Gallons Per Minute)

1-800-777-2926

PRODUCT CLASSIFICATION

111

Lechler product number system

The following diagram will help explain product number codes in relation to the Lechler spray nozzle line.

need.

Please note that some products, such as pneumatic atomizing, do not exactly follow this product coding system.

2. 63 L Nozzle Style type

Flow rate

Spray

angle

4

Material code

Connection type

С = 1/4"

Е = ³/8"

G Κ = 3/4"

Ρ = 1¹/4"

R = 11/2" = 2"

Y = 2¹/2"

MA = 3"

ME = 4"

MG = 5"

MK = 6"

(3"-6" designations are NPT only)

A = 1/8"

= 1/2"

= 1"

Thread size code

female

D = ¹/4"

F = 3/8"

 $B = \frac{1}{8}''$

H = 1/2"

N = 1"

 $Q = 1^{1}/4^{"}$

 $S = 1^{1}/2^{"}$

 $Z = 2^{1}/2^{"}$

W = 2"

MB = 3"

MF = 4"

MH = 5"

ML = 6"

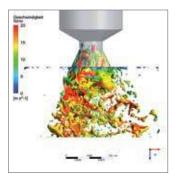
= ³/4" L

Thread size

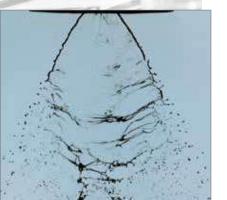
Nozzle type code	Style code	Flow rate code	Spray angle code	Material code	Connection type	Thread
	See specific nozzle chart for style code	See specific nozzle chart for style code	0= 0° (Solid Stream) 1= 20° 2= 30° 3= 45° 4= 60° 5= 75° 6= 95° 7=120° HOLLOW AND FULL CONE 1= 20° 2= 30° 3= 45° 4= 60° 5= 80° 6= 90° 8=120° or larger 9=180°	02 Mild Steel 11 430 FSS 15 321 SS 16 303 SS 17 316 SS 1C 304 SS 1D 304L SS 1Y 316L SS 22 Hastelloy® C-4 24 Hastelloy® C-276 25 Titanium GR2 26 Monel 400 27 Tungsten Carbide 2A Nickel 200 2E Nickel 201 30 Brass 32 Bronze 35 Nickel-Plated Bra 3W Zinc 42 Aluminum, Alloy 50 PVC (Polyvinylch	SS	male A = 1 C = 3 G = 1 K = 3 M = 1 P = 1 R = 1 V = 2 MA = 3 ME = 4 MG = 5 MK = 6 (3"-6" of are NPT
Lechler manufactures tho products which are const and redesigned for many we do our best to make s our publications accurate products, there are times of performance or physic product may change. We make such changes whe do our best to alert you to could affect your applicati attribute is particularly crit to contact us to address a may have. In most cases, products a performance rather than of result in manufacturing ba match dimensionally, part like orifice diameters. If you causes you concern, plea Lechler representative.	antly being c reasons. Wh sure the data ly reflects ou when some al configurati reserve the r n required, b o any modific ion. When an tical, please fr any concerns are manufactu dimensions. atches that du ticularly critic ou see somet	hanged iile in r aspect on of a right to ut we will ations that y nozzle eel free eel free s you ured to This could o not al points hing that		 51 Nylon (Polyamide 53 PP (Polypropylen 55 PTFE (Polytetrafl or Teflon® 56 POM (Polyacetate 5D PVDF (Natural) 5E PVDF (Polyvinylid 5K ABS (Acrylonitrile Plastic 6C EPDM (Ethylene I Monomer) Rubbe 6D Nitride-Bonded S 7A Viton® 7E Silicone 7J Santoprene 7T 316L SS with Pee 73 Soft Rubber A3 Hardened Stainle 	e) e) or Delrin® denefluoride) e Butadiene Styrene) Propylene Diene r ilicon Carbide k k ss irconium Oxide Insert red oy® C-276	
For the most up-to-date in our catalog, please refer t www.lechlerusa.com, w download whatever section need	to our web si where you ca	te, in		E.I. DuPont de Nem	Delrin® are registered trademarks o lours and Company. stered trademark of Haynes Internat	

LECHLER

TRADITION AND PROGRESS IN SPRAY TECHNOLOGY



What does the Lechler brand represent? A worldwide leader among nozzle manufacturers; innovative spraying technology based upon our engineering expertise; an interdisciplinary approach towards the development of spray solutions; state-of-the-art production equipment and methodology; experienced employees who care about our customers and their spray applications; and a high standard of quality in the manufacture of our products, resulting in successful applications and satisfied customers. We've worked over 130 years to earn the reputation that the Lechler brand represents. We're not about to stop now.



Research and development for a better future

Since 1879 Lechler has been searching for new solutions to spraying problems and has developed and manufactured spray nozzles for many trendsetting applications. Research and development is essential for the innovative products we have developed over the years. Our engineering experience and international support help keep Lechler on the leading edge of R&D.

Using ultra-modern techniques for construction and simulation, Lechler engineers and technicians convert their ideas into products of high practical value. Full scale tests simulate real life conditions. Only when all details comply with our requirements are products released into production.

Your advantage lies in our productivity

New custom-made manufacturing techniques guarantee productivity and flexibility.

Making a product right once isn't very meaningful if you can't make it that way again... and again...and again. Lechler has developed quality procedures and automated processes which ensure production repeatability with consistent product properties. For us, this means that not only does one nozzle in a family look like another, but its sprav performance will be identical to it, too. This applies to 25,000 different variants, materials and sizes. So for us it's not an insult to say, "If you've seen one Lechler nozzle, you've seen them all."

A few words on quality

Lechler products are used

in many different industries

and applications. Therefore,

products have to meet certain

specifications. Lechler defines

"quality" as the ability of our

but surpass the customer's

individual requirements for

In order to meet the varied

required by our customers,

Lechler operates according

to the requirements of ISO

objectives and standards we

works carefully and diligently

wish to achieve. Lechler's staff

to carry out permanent quality

control from material reception

through manufacturing to

And through our continuous improvement objectives, you can count on Lechler products only getting better and better.

shipment.

9001:2008 in setting the

specifications of these products

performance.

products to not only meet

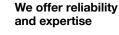
the requirements of the

What can be measured

Even before we complete its manufacturing, we know the exact flow rate, spray angle and uniformity of distribution of each Lechler nozzle.

Right from the beginning, functions and spray characteristics are accurately defined and recorded by our sophisticated measuring techniques and reliable documentation.

Our computer-controlled measuring equipment, such as the Phase-Doppler Particle Analyzer, the spray jet measuring device with 3D presentation, and our liquid distribution systems, are the essential prerequisites for precise measuring data.


starts before the sale. We offer technical advice and assistance with your spray applications through our experienced staff and sales representatives. You'll have confidence making the

At Lechler, the service

purchase, knowing that our solution is the right one. When you purchase products

from Lechler, you'll know that our worldwide engineering and manufacturing expertise go a long way in providing reliable solutions. We are supported by six manufacturing locations and sales offices throughout the world and have been in business since 1879 and you can count on Lechler being there tomorrow.

You look for reliability in a supplier. That's why Lechler strives to be a trusted supplier to its customers. As you search through our catalog, you'll find a large product offering with engineered solutions for all your application needs. Many of these products are readily available to ship within one to two business days. For fabricated engineered systems, Lechler will strive to meet your delivery requirements.

PERFECT NOZZLE TECHNOLOGY **TO SOLVE MANY INDUSTRIAL TASKS**

In many industries there are a number of tasks that can be economically accomplished with the aid of spraying techniques. However, optimum effects only can be achieved when a spray nozzle manufacturer's wide knowledge of specific requirements and particular service conditions are taken into account, too-right from the project stage. Where this is not the case, a job may quickly end up as a costly experiment for the user.

Lechler, aware of this risk, has put up special teams for a number of fields of applications. These teams are joined by external consultants for various industries. In addition there is the know-how Lechler has accumulated over many years of direct activity in all industries. These synergies are also useful for other, new spray applications. That's why our spray nozzle specialists are often asked to participate as competent consultants in the first planning phases by our customers. The typical result? Quality products and successful spray applications.

This catalog contains a wide selection of nozzles that can be used in many different areas of industry. Where specific information would be useful for special applications, we would be happy to send you our trade brochures.

Surface treatment

- Degreasing
- Phosphating
- Spray painting
- Galvanizing
- Cleaning

Paper industry

- Foam suppression
- Jet cutting
- Humidification
- Cleaning

Chemical and pharmaceutical industries

- Cleaning
 - Humidificationg
 - Coating
 - Mixing disinfection
 - Atomization of viscous liquids

Food and beverage industries

- Cleaning
- Pasteurization
- Belt lubrication
- Disinfection
- Humidification
- Cooling

Electronic industry

- Circuit board cleaning
- Spray etching Coating

Fire protection

- Tank cooling
- Spraying aboard ships
- Water curtains
- Shavings hopper

Automotive industry

- Degreasing
- Cleaning
- Preservation Coating
- Cooling
- Lubricating
- Drying

- Machine tools
- Cooling Lubricating
- Cleaning Blowing off

You can use the order form in the back of this catalog to request specific, special information on nozzles and their areas of use that are not covered in this catalog.

(ICIE) rrecision Spray Noz for the Food and Be Industry

Cleaning

LECTER Precision Spray N


Chemical

www.LechlerUSA.com

SPECIAL TASKS REQUIRE SPECIAL SOLUTIONS

Very individual demands are placed on nozzle technology in the steel industry, environmental engineering, and agriculture. That's why Lechler maintains specialist teams who have the specific expertise in these areas. We have compiled product information in separate brochures for these specialized areas. These can be requested using the form at the end of this catalog.

Smelting and rolling mill technology

A whole range of specifically developed and proven nozzles in different versions and materials is available to meet the unique requirements of this specialized area.

Descaling, secondary cooling in continuous casting systems, and roller cooling are just a few of the many different applications. Nozzles and nozzle systems play a crucial role in all production stages in terms of process optimization through increased quality and efficient production.

A wide range of standard nozzles is supplemented by the possibilities that are available for individual special solutions. At the same time, customers have at their disposal a competent team of experienced specialists employing state-of-theart design and production methods.

ELECTOSPRAY

DOUB

Port and price

DECESSION

LUCCEUR.

Environmental technology

Flue gas desulphurization and gas treatment are important areas of work in energy and environmental technology in which Lechler nozzles and systems are used. Internationally, our wideranging expert knowledge and unsurpassed experience has made Lechler a sought-out partner in this sector. Leading system manufacturers and operators all over the world have opted to become Lechler partners because they have been impressed by our innovative strength, our high level of competence in solving problems, and our global organization.

Find out about the possibilities for collaboration with Lechler and how you can profit from our expert knowledge.

Agricultural technology

All over the world, Lechler agricultural nozzles and accessories are synonymous with efficiency and economy, while also taking account of environmental aspects.

Lechler has taken a leading role in loss-reducing application technology in particular. Lechler nozzles ensure that the pesticide lands on the plant exactly where it's needed. This makes a decisive contribution towards optimizing the use of pesticides and protecting the environment.

A comprehensive range of nozzle accessories and other useful tools that Lechler can provide help the farmer to optimize the application technology and thereby increase his earnings.

Lechler teams with specialist knowledge will support you in your work. We would also be happy to provide you with specialized product information. <image>

SELECTING THE RIGHT SPRAY CHARACTERISTICS

Principles of Spray Technology

Atomization is the process of breaking a mass of fluid into smaller droplets for a twofold purpose: Control the distribution of liquid and increase the amount of liquid surface area to best achieve the spray's ultimate purpose. Nozzles follow these basic principles of atomization:


Single fluid atomization

Forcing pressurized liquid through a specifically-shaped chamber and orifice increases its velocity and breaks it into droplets. Each nozzle combines internal liquid collision, turbulence, spinning action, and its own specific design to create the desired shape and distribution of the liquid as it leaves the orifice.

Pneumatic (twin fluid) atomization

Gas streams collide with liquid, transferring energy to the liquid to create very small droplets. This method allows atomization of liquids whose viscosity is too high for single fluid nozzles. Air atomizing nozzles are either internal or external mix, meaning the gas and liquid mix either inside or outside the nozzle chamber.

Nozzles are also classified by their spray pattern and physical configuration. Here are the primary types you will find in this catalog:

Tank cleaning nozzles

Tank cleaning nozzles are either rotating or static sprays. Rotating nozzles are either free spinning (i.e., driven by reactive force of the cleaning fluid) or gear-driven by turbine or internal gears. These nozzles effectively clean tank surfaces through rapid repetition impact and flow movement, which loosens the soil and rinses it away. Free spinning nozzles operate best at lower pressures (20-60 psi), as higher pressures cause the head to rotate too fast, creating more of an atomized mist spray which is less effective for cleaning. Gear-driven models can successfully operate at slightly elevated pressures, and these generate more impact, as their head rotation is controlled by the gears.

Static spray balls do not rotate. They are used primarily for washing down relatively small tanks and vessels.

.

Pneumatic atomizing

This is a wide-ranging product family used where low liquid capacities and fine droplets are required. While these are normally used with pressurized air and water-like fluids, certain of these nozzles are well suited for higher viscosity liquids or situations where pressurized air is not available and gravity feed or siphoning measures must be used instead. Applications include: Humidification, dust control, gas cooling, precision coating, and spray drying.

Flat fan air atomizers:

These produce a flat spray pattern with extremely fine droplets. Spray angles can range as high as 80°. They are available in both internal and external mix configurations.

Full cone air atomizers:

These produce a round, conical spray with extremely fine droplets distributed throughout. Spray angles range from 20° to 60°. They are available in both internal and external mix configurations.

Hollow cone spray

This design is employed more frequently for its ability to create fine droplets rather than the shape of the spray. Applications include: Scrubbers, chemical reactors, gas cooling, and dust control.

Axial flow:

An internal vane (swirl insert) creates a conical spray with a hollow center. The resulting impact area is ring-shaped. This configuration is generally limited to small capacities but generates some of the finest droplet size profiles of any single fluid nozzle.

Tangential flow:

The liquid enters the nozzle on a path perpendicular to the output cone to generate swirling action without an internal vane. Most hollow cone nozzles use this design approach, especially in larger capacities, due to its higher clog resistance. The centrifugal force on the swirling liquid helps form the droplets as the liquid leaves the orifice.

Full cone spray

Internal swirling action creates a cone with uniform distribution throughout. This is most appropriate when trying to completely cover a large area with medium-sized droplets. Applications include: Product cooling, washing, and conveyor cleaning.


Axial flow:

The most common configuration uses an internal vane (swirl insert) to create a spray angle as wide as 120°. Vanes are designed to reduce clogging potential with uniform liquid distribution.

Tangential flow:

Due to their vaneless design, these nozzles can offer an even more clog-resistant approach for smaller capacities if the inlet position is not a constraint. Critical internal geometry allows the spray to fill in to achieve distribution similar to axial counterparts.

Flat fan spray

This design is the first choice when a sharply defined spray is needed for concentrated impact and cleaning power. There are a wide variety of capacities, spray angles and distributions to create the desired effect very precisely. Applications include: Parts cleaning, product cooling, conveyor washing, and strip coating.

Axial flow:

Most designs use a precisely shaped orifice to create controlled turbulence which breaks apart the liquid. Spray angles range from 15° to 110° with specific liquid distribution.

Tangential (deflector) flow:


Some designs use a solid stream orifice that sprays against a deflecting surface, sometimes referred to as a "tongue." One such model produces an exceptionally wide spray angle while another channels the fluid into a powerful narrow angle jet. The round orifice of each minimizes clog potential.

Solid stream spray

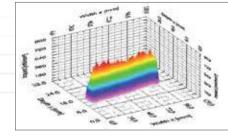
Calling this nozzle a spray is misleading in that it is the only family designed specifically not to produce droplets. This nozzle creates a solid shaft of water that retains its shape as long as possible before it begins to atomize. This generates the most concentrated impact possible. All conventional designs are axial. Applications include: Concentrated cleaning, cutting, and trimming.

Air nozzles

Air does not have the same spray characteristics as liquids, so most liquid nozzles are not suited for air. Air nozzle designs typically concentrate the stream into a small area, or disperse it into a flat fan. Compressed air can create very high noise levels, so effective designs minimize this while achieving the desired distribution. Many of Lechler's air nozzles use a multi-channel orifice configuration for just this purpose.

NOZZLE PERFORMANCE AND CHARACTERISTICS

The most essential nozzle operating attributes are:


Flow rate
Spray angle
Liquid distribution
Spray impact
Droplet size

Flow rate and spray angle

Flow rate varies directly with pressure (except for internal pneumatic atomizers). Flow rate and spray angle are also dependent upon the fluid being sprayed. All data shown in our catalog is based upon spraying water. A spray angle is measured from the nozzle orifice. As spray distances increase, the measure of spray width or pattern diameter is significantly less accurate and largely dependent upon gravity and ambient conditions, such as air friction losses. This results in an actual spray width which is less than the theoretical one for the nozzle's stated spray angle. In critical situations, only empirical testing can determine the final spray width.

Liquid distribution

Liquid distribution refers to the distribution of droplets of a sprav within the sprav area. For most sprav applications. an even distribution of liquid upon the target is paramount. Most axial flat fan nozzles have distribution which is parabolic across the nozzle's sprav width-i.e., heavier in the middle and less on either end. This is due to the elliptical shape of the nozzle orifice required to create the fan pattern. Thus, flat fan nozzles must be overlapped on headers to create an even distribution across the total

spray width. Certain deflector flat fan nozzles spray more uniformly, however, and can be used individually for even distribution.

Spray impact

Impact is the impingement of a spray upon its target. It is a factor of:

- The droplet size created by the specific nozzle
- The feed pressure through the nozzle
- The flow rate of the nozzle at the feed pressure.

While impact is quantitatively measurable, it is more typically qualitatively measured. That is, testing with various nozzles and operating conditions can determine what impact is most effective for that spray application.

Viscosity

Viscosity is probably the most significant of all liquid properties because it can vary over an extreme range. Liquid viscosity resists surface formation. If the viscosity is great enough, a nozzle may produce a mass of filaments instead of a spray. Liquid viscosity is remarkably sensitive to temperature. Thus, liquid viscosity has a significant effect on all of the spray characteristics.

Specific gravity

The main effect of the specific gravity of a fluid being sprayed is on the flow rate of the nozzle. The lower the specific gravity of a liquid, the higher the velocity through the nozzle, and vice versa. Thus, for lower specific gravity, the flow rate is larger than the liquid with a higher specific gravity at the same pressure. To find the expected flow rate for liquid whose specific gravity is different from that of water, use the formula in the chart below.

* Flow rate/pressure chart key

For either flat fans or full cones, v_1 and p_1 are the known flow rate and pressure respectively. For an unknown flow rate, v_2 is the resulting flow rate at the desired pressure p_2 . For an unknown pressure, p_2 is the resulting pressure required to achieve the desired flow rate v_2 .

Specific gravity

$\begin{split} & \text{SG} = \text{Specific gravity} \\ & \text{SG}_{\text{FL}} = \text{Specific gravity of fluid} \\ & \text{Density}_{\text{FL}} = \text{Density} \ (\text{g/mL}) \ \text{of fluid} \end{split}$	$\label{eq:G} \begin{split} & \text{SG} = \text{Density}_{_{\text{FL}}} \left(g/\text{mL} \right) / \text{Density of water} \left(1g/\text{mL} \right) \\ & \text{Therefore, specific gravity of water} = 1.00 \end{split}$	
Expected flow rate of fluid other than water = Any given flow rate of water x $(1/\sqrt{p_{FL}})$	Example: For fluid with SG _{FL} = 1.2 and given flow rate of 4.0 gpm, expected flow = $4.0 \times (1/\sqrt{1.2}) = 3.6$ gpm	

Surface tension

Surface tension is an important physical properly affecting surface formation. This quality makes the liquid resist breaking into droplets. The main effect of the surface tension is on the spray angle and droplet size of the spray nozzle as well as on the spray distribution.

. . . .

Temperature

Temperature influences a liquid's viscosity, surface tension, and specific gravity, which in turn can affect spray nozzle performance.

Pressure

The greatest influence on the flow rate is pressure. Flow rate not only increases directly with an increase in pressure but does so at a consistent rate. Please see the Flow rate/pressure chart below for formulas to determine for either flat fans or full cones (1) a flow rate when pressures are known or (2) the necessary pressure to create a desired flow rate.

Flow rate/pressure chart*

Formulas for determining unknown flow rate (v_2) and pressure	$v_2 = \sqrt{\frac{p_2}{p_1}} \cdot v_1 \text{[gpm]}$
(p_2) for nozzles other than Axial Full Cones	$p_2 = \left(\frac{V_2}{V_1}\right)^2 \cdot p_1[psi]$
Formulas for determining unknown flow ra-	$v_{2} = \left(\frac{p_{2}}{p_{1}}\right)^{0.4} v_{1}[gpm]$
te (v_2) and pres- sure (p_2) for Axial Full Cones	$p_2 = \left(\frac{V}{V}\right)^{2.5} p_1 \text{[psi]}$

DROPLET SIZE INFORMATION

Droplet size

Droplet size is important both as a part of achieving an even spray distribution and in the accomplishment of goals required by certain spray applications. The spray from a given nozzle does not break into uniform droplets but atomizes into a wide range of individual droplet sizes. Lechler measures droplet size and velocity of a given spray with a Phase Doppler Particle Analyzer. If droplet size is critical to your application, contact us to discuss your specific requirements.

Droplet sizes (One inch = 25,400 microns)									
•	500 microns								
•	1,200 microns								
	5,500 microns								
•	1,200 microns								

A spray nozzle breaks up a mass of fluid into a multitude of smaller droplets for the purpose of achieving one of these end results:

- Cleaning
- Cooling
- CoatingCombustion

Droplet size is typically measured in microns. A micron is 1/1000 of a millimeter (mm), and for this purpose, relates to a mean or median droplet diameter.

Droplet size considerations

Droplet size is important in a spray's performance. Large droplets are best when impact is important, such as for cleaning. Smaller droplets are best when more uniform coverage is required or if a fine mist is required (such as for humidification or evaporation). There are several different ways that droplet sizes are expressed but the main two ways are as follows:

Sauter Mean (or SMD)
 The diameter of a droplet
 whose ratio of volume to
 surface area is equal to that
 of the entire spray sample;
 also called "volume surface
 mean."

• Mass (Volume) Median The mass (volume) median diameter of a droplet which divides the mass (volume) of the spray into two equal halves.

	Significant factors influencing droplet size include:	sring
nen as lets rm a fine	 Nozzle type Flow capacity Inlet feed flow pressure (psig) Spray pattern 	Engineering data
or ion). vo	All other factors being equal, the following nozzle types produce droplet size from smallest to largest:	
t	 Pneumatic atomizing Hollow cone Flat fan Full cone 	
hat e;	Refer to the chart on page 14	
ace n ian	regarding Spray Performance to see how other operating and fluid conditions can affect droplet size.	

	• • • • • • • • • • • • • • • • • • •	•••
Given a	large droplet	and
a smalle	er droplet which	ch is
half the	diameter of th	e large
one: The	e volume of th	e large

half the diameter of the large one: The volume of the large droplet corresponds to the total volume of eight of the smaller droplets. The surface area of the large droplet is four times the size of that of the smaller droplet. The total surface of the eight smaller droplets, however, is twice the size of the large droplet.

Single fluid nozzles		Liquid pressure (psi)									
-	1	5	3	80	75						
	Flow rate	Droplet size	Flow rate	Droplet size	Flow rate	Droplet size					
	(gpm)	(µm)	(gpm)	(µm)	(gpm)	(µm)					
ial flow hollow cone nozzle	-	-	.03 .30	140 240	.04 .42	100 180					
ngential hollow cone nozzle	- .48	-	.30 6.6	320 640	.38 9.5	240 490					
Full cone nozzle	.21	540	.30	400	.42	300					
	5.0	1300	6.6	1100	10.6	750					
Cluster head nozzle	.24	200	.33	175	.53	150					
	5.3	400	7.4	265	11.6	190					
Flat fan nozzle	.18	400	.30	360	.42	300					
	4.8	1200	6.6	1000	10.6	690					

Pneumatic atomizing nozzles	Air/water ratio (m ³ /h:l/min)									
-	5	5	1	0	20					
	Flow rate (I/min)	Droplet size (µm)	Flow rate (I/min)	Droplet size (µm)	Flow rate (I/min)	Droplet size (μm)				
Various	Various	90	Various	55	Various	40				

SPRAY NOZZLE CONSIDERATIONS

Engineering

How well and how long any nozzle will perform is largely affected by its operating conditions. A nozzle's spray performance should be regularly checked and evaluated to determine if it is acceptable. The nozzle itself should also be visually inspected during a maintenance shutdown and checked for signs of wear or damage. Reasons for a poor or deteriorating spray performance include:

Wear/Erosion

- What is it—Gradual reduction of the nozzle material resulting in an enlarged orifice or internal passages.
- Symptoms
- Larger flow rate
- Reduced spray angle
- Decreased impact
- Larger droplets
- Irregular spray pattern
- Solution—Replace nozzle.

Corrosion

- What is it—Deterioration of the essential properties of a material due to the chemical reaction to the material it is spraying. Can result in a build-up of oxides or salt on the outside of the nozzle near the orifice.
- Symptoms
- Same as for Wear/Erosion
- Damage to the nozzle
 Solution—Replace nozzle.

Bearding/Caking

See page 54.

Clogging

- What is it—Unwanted particles from the sprayed fluid which become lodged in the orifice, restricting the incoming flow.
- Symptoms
- Reduced flow rate
- Reduced spray angle
- Irregular spray pattern
 Solution—Clean out nozzle orifice and internals
- (CAUTION: Do NOT clean with a metal utensil).

14

High Temperature

- What is it—Breakdown of the nozzle material due to elevated temperatures of either the fluid being sprayed, the surrounding environment, or both.
- Symptoms
- Softened material
- Unpredictable performance
- Solution—Replace nozzle and ensure that material of replacement nozzle is more resistant to high temperatures.

Accidental Damage

- What is it—Physical damage to the nozzle or its orifice by dropping during installation, falling during operation, or scratching while attempting to clean with inappropriate tools.
- Symptoms — Noticeable damage to
- outside of nozzle - Possible leakage around nozzle if damage to
- threads — Unpredictable performance
- if damage to orifice • Solution—Replace nozzle, especially if performance is affected or nozzle leaks due
- Service life

The service life of a given nozzle is dependent on various circumstances:

Operating pressure

to thread damage.

- The liquid being sprayed
- The surrounding environmentSolids in the liquid
- Deposits on the nozzle
- Installation and handling

Therefore we cannot predict how long a nozzle will last in a given application. Select from our long list of materials one that works best for you.

Nozzle wear

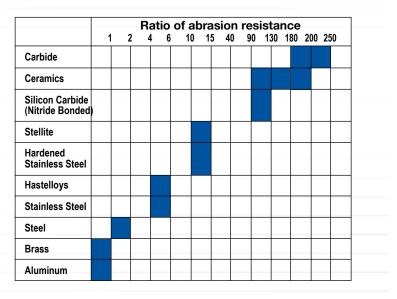
Nozzle wear is manifested by an increased flow and the subsequent deterioration of spray performance.

A reduction in system operating pressure is often an indication of increased nozzle wear, especially when positive displacement pumps are used.

Flat fan axial nozzles exhibit a narrowing of the spray pattern with wear. Other type spray nozzles reveal a loss in distribution uniformity within the spray pattern, though without a noticeable change in pattern size. Please call and consult with our sales engineers to determine the best nozzle design and material to satisfy your specific spray requirements. We will be glad to help.

Conditions affecting spray nozzle performance

The charts below are for:


- The basic cause-and-effect relationship between spraying conditions and performance
- The ratio of abrasion resistance differences between various nozzle materials

Spray Performance

	Increase in operating pressure	Increase in viscosity		Increase in fluid tem- perature	Increase in surface tension
Pattern quality	+	*	_	+	0
Capacity	+	_	*	*	0
Spray angle	+ then -	0	_	+	-
Velocity	+	_	_	_	0
Droplet size	_	0	+	_	+
Impact	+	0	_	+	0
Wear	+	0	_	*	0

* Depends on Fluid Being Sprayed and Spray Nozzle Used.

+ Increases — Decreases O Negligible or no effect

ECHIER

SELECTING NOZZLE MATERIAL

.

There are more than 100 different materials from which our nozzles can be made but for most applications, a handful of compositions can handle the task.

Brass

- Economical
- Long-lasting metal material for low pressure applications where chemical corrosion is not an issue

Stainless steel and nickel-based alloys

- Excellent performance in more aggressive environments where higher temperatures and corrosive products may shorten the life of a lesser material
 Good value for the above
- conditions

Ceramic and refractorybased materials

- Best for erosive wear conditions
- Can handle extreme temperatures that might melt or corrode common metals or plastics
- Provide long life in the toughest applications

Plastics

- Includes PVDF, PP, PTFE, and POM among others (more info on PVDF on this page)
- High value combination of economy, long service life, and resistance to a broad range of chemicals (where temperatures allow)

PVDF -

Polyvinylideneflouride

PVDF is one of the more sophisticated materials today that can be used as nozzle material. Lechler's injection molded PVDF material offers spray quality and durability as good as its best brass and stainless steel counterparts. And because of its low cost, we say that PVDF provides "the performance of stainless steel at the price of brass". Lechler has its own in-house mold-making and injectionmolding equipment which allows us to control quality and manufacturing while keeping costs low. See our product

offerings for nozzles in PVDF. PVDF is an outstanding choice as a nozzle material for many reasons:

Chemical resistance

- PVDF is typically resistant to: • Most acids
- Salts and weak bases
 Halogens and
- halogenated solvents • Alcohol
- Oxidants
- DI water
- UV and nuclear radiation

• Temperature range PVDF can be used at temperatures as high as 285°F depending on the chemical environment.

- Abrasion resistance
 In most nozzle applications,
 PVDF will outlast brass, mild
 steel, PVC, PTFE, and most
 grades of stainless steel
- FDA acceptance

The FDA accepts PVDF for uses in a broad range of food and pharmaceutical applications where stainless steel used to be the only choice.

Conversion factors for determining the weight of various materials

Material	Factor
Brass	1.00
Stainless steel	.95
Plastics (PVDF)	.21
Aluminum	.33
Silicon carbide	.39
Titanium	.54
Cast iron	.89
Tantalum	2.00

Most weights in this catalog refer to brass. By applying the conversion factors of this chart, the approximate weight of nozzles in selected other materials can be easily calculated.

Stainless steel

Silicone carbide

CONVERSION TABLES AND COVERAGE CHART

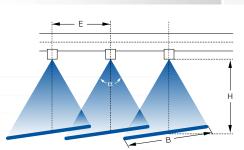
Multiply I	by	to obtain	Multiply	by	to obtain	Multiply	by	to obtain
Bar 1	00	Кра	Cubic Meters	61023	Cubic Inches	Imperial Gallons	1.2	Gallons
Bar1	4.5	P.S.I.	Cubic Meters	264.2	Gallons	Inches	2.54	Centimeters
Centimeters0	.3937	Inches	Cubic Meters	1000	Liters	Kgf./Sq. Cms	14.22	P.S.I.
Centistokes S	Sp. gravity	Centipoise	Degree (Celsius)	(°Cx1.8)+32	Degree (Fahren-	Liters	1000	Cubic Centimeters
Cubic Centimeters 0	.061	Cubic Inches	heit)			Liters	0.264	Gallons
Cubic Centimeters 0	.000264	Gallons	Degree (Fahrenheit)	(°F-32)x0.56	Degree (Celsius)	Liters	0.22	Imperial Gallons
Cubic Centimeters 0	.001	Liters	Feet	0.3048	Meters	Liters	33.8	Ounces (Fluids)
Cubic Feet 1	728	Cubic Inches	Feet of Water	0.0295	Atmospheres	Meters	3.281	Feet
Cubic Feet 0	.02832	Cubic Meters	Feet of Water	0.433	P.S.I.	Microns	0.0394	Thousandth of an Inch
Cubic Feet7	.48	Gallons	Gallons	3785	Cubic Centime-	Millimeters	0.0394	Inches
Cubic Feet 2	8.32	Liters	ters			Pounds	453.6	Grams
Cubic Feet (Water) 6	2.43	Pounds (Water)	Gallons	0.1337	Cubic Feet	Pounds (Water)	0.1198	Gallons
Cubic Inches 1	6.39	Cubic Centimeter	Gallons	0.83267	Imperial Gallons	P.S.I	0.068	Atmospheres
Cubic Inches 0	.00433	Gallons	Gallons	3.785	Liters	P.S.I	0.06895	Bar
Cubic Inches 0	.0164	Liters	Gallons	8.34	Pounds (Water)	P.S.I	2.307	Feet of Water
Cubic Meters 3	5.31	Cubic Feet	Grams	.0022	Pounds	P.S.I	0.0703	Kgf./Sq. Cms.
						P.S.I	6.895	Кра
to obtain	by	divide	to obtain	by	divide	to obtain	by	divide

P Pressure

V Volume

	Unit	bar	Pascal [Pa] = N/m ²	kp/cm ² = 1 at	psi	lb/sq ft	Conversion Unit	I	m ³	lmp. gal	US gal
_	1 bar	1	100000	1.02	14.5	2089	1 l (1 dm ³)	1	1·10 ⁻³	0.22	0.264
	1 Pascal [Pa]	1·10 ⁻⁵	1	1.02.10-5	14.5·10 ⁻⁵	0.0209	1 m ³	1000	1	220	264.2
	1 at = kp/cm ²	0.9807	98070	1	14.22	2048	1 Imp. gallon	4.546	4.546·10 ⁻³	1	1.201
_	1 psi	0.06895	6895	0.07031	1	144	1 US gallon	3.785	3.785·10 ⁻³	0.8327	1
	1lb/sq ft	0.479·10 ⁻³	47.9	0.4882.10-3	6.94·10 ⁻³	1					

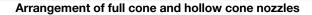
Theoretical Spray Coverages


Spray angle						Dist	ance fro	m nozz	le orifice					
•	2"	4"	6"	8"	10"	12"	15"	18"	24"	30"	36"	48"	60"	72"
5° 10° 15°	0.2" 0.4" 0.5"	0.4" 0.7" 1.1"	0.5" 1.1" 1.6"	0.7" 1.4" 2.1"	0.9" 1.8" 2.6"	1.1" 2.1" 3.2"	1.3" 2.6" 3.9"	1.6" 3.1" 4.7"	2.1" 4.2" 6.3"	2.6" 5.2" 7.9"	3.1" 6.3" 9.5"	4.2" 8.4" 12.6"		
20° 25° 30°	0.7" 0.9" 1.1"	1.4" 1.8" 2.1"	2.1" 2.7" 3.2"	2.8" 3.5" 4.3"	3.5" 4.4" 5.4"	4.2" 5.3" 6.4"	5.3" 6.6" 8.1"	6.4" 8.0" 9.7"	8.5" 10.6" 12.8"	10.6" 13.3" 16.1"	12.7" 15.9" 19.3"	16.9" 21.2" 25.7"	32.2"	38.6"
35° 40° 45°	1.3" 1.5" 1.7"	2.5" 2.9" 3.3"	3.8" 4.4" 5.0"	5.0" 5.8" 6.6"	6.3" 7.3" 8.3"	7.6" 8.7" 9.9"	9.5" 10.9" 12.4"	11.3" 13.1" 14.9"	15.5" 17.5" 19.9"	18.9" 21.8" 24.8"	22.7" 26.2" 29.8"	30.3" 34.9" 39.7"	37.8" 43.6" 49.6"	45.4" 52.4" 59.6"
50° 55° 60°	1.9" 2.1" 2.3"	3.7" 4.2" 4.6"	5.6" 6.3" 6.9"	7.5" 8.3" 9.2"	9.3" 10.3" 11.5"	11.2" 12.5" 13.8"	14.0" 15.6" 17.3"	16.8" 18.7" 20.6"	22.4" 25.0" 27.7"	28.0" 31.2" 34.6"	33.6" 37.5" 41.6"	44.8" 50.0" 55.4"	56.0" 62.4" 69.2"	67.2" 75.0" 83.0"
65° 70° 75°	2.5" 2.8" 3.1"	5.1" 5.6" 6.1"	7.6" 8.4" 9.2"	10.2" 11.2" 12.3"	12.7" 14.0" 15.3"	15.3" 16.8" 18.4"	19.2" 21.0" 23.0"	22.9" 25.2" 27.6"	30.5" 33.6" 36.8"	38.2" 42.0" 46.0"	45.8" 50.4" 55.2"	61.2" 67.2" 73.6"	76.4" 84.0" 92.0"	91.6" 101.0" 110.0"
80° 85° 90°	3.4" 3.7" 4.0"	6.7" 7.3" 8.0"	10.1" 11.0" 12.0"	13.4" 14.7" 16.0"	16.8" 18.3" 20.0"	20.2" 22.0" 24.0"	25.2" 27.5" 30.0"	30.3" 33.0" 36.0"	40.3" 44.0" 48.0"	50.4" 55.0" 60.0"	60.4" 66.0" 72.0"	80.6" 88.0" 96.0"	101 .0" 110.0" 120.0"	121.0" 132.0" 144.0"
95° 100° 110°	4.4" 4.8" 5.7"	8.7" 9.5" 11.4"	13.1" 14.3" 17.1"	17.5" 19.1" 22.8"	21.8" 23.8" 28.5"	26.2" 28.6" 34.3"	32.8" 35.8" 42.8"	39.3" 43.0" 51.4"	52.4" 57.2" 68.5"	65.5" 71.6" 85.6"	78.6" 85.9" 103.0"	105.0" 114.0"		
120° 130° 140°	6.9" 8.6" 10.9"	13.9" 17.2" 21.9"	20.8" 25.7" 32.9"	27.7" 34.3" 43.8"	34.6" 42.9" 54.8"	41 .6" 51 .5" 65.7"	52.0" 64.4" 82.2"	62.4" 77.3" 98.6"	83.2" 103.0"	104.0"				
150° 160° 170°	14.9" 22.7" 45.8"	29.8" 45.4" 91.6"	44.7" 68.0"	59.6" 90.6"	74.5" 113.0"	89.5"	112.0"							

EXAMPLES FOR NOZZLE ARRANGEMENTS

Arrangement of flat fan nozzles with parabolic liquid distribution

Lechler flat fan nozzles provide a consistent, parabolic coverage over the impact area. For this purpose, the spray widths B ought to overlap each other by 1/3 to 1/4. To avoid interferences of the sprays, the nozzle orifices must be offset 5°-15° to the pipe axis.

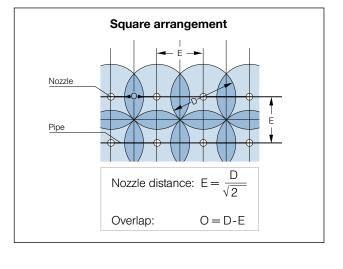

Engineering data

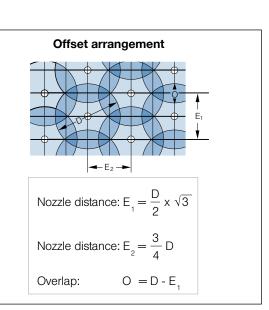
Top view

Front view

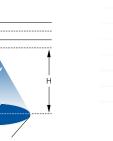
Alignment of tongue-type nozzles

Lechler tongue-type nozzles have an even or uniform liquid distribution. In order to achieve an even surface coverage the nozzles need to be aligned in such a way that spray widths B overlap by either 0% or 50%. Therefore the nozzles should be inclined in an angle of 15° to the vertical of the horizontal axis of the tube (either with a weld base at an angle or a Lechler ball joint nozzle mount) in order to prevent a disturbance of the spray.




For full cone and hollow cone nozzles, the distance E should be sized so that the spray cones overlap by about 1/3 to 1/4.

0 =	Overlap of spray angles
D =	Spray diameter
E =	Nozzle distance
Η =	Installation distance of nozzles


 $\alpha =$ Spray angle

Square or offset arrangement of full cone or hollow cone nozzles

ACCESSORIES TO SIMPLIFY OPERATION

Engineering data Choosing one of our nozzles is only half of the total process. It can't do its job without being connected properly to the liquid supply. Our range of accessories can help you optimize nozzle mounting and placement to save time and ensure reliable operation.

The most useful approach may be a custom fabricated header. Lechler can design and build a header to support and supply multiple nozzles in a way that will simplify plumbing, speed installation, and create a trouble-free spray process.

With a few moments of planning ahead, you can consider some well-placed accessories that might make your job a lot easier. Standard threaded nozzles:

. .

10 M

Clip-on nozzle bases for quick, inexpensive header mounting, pages 103, 137

Ball joints allow precise nozzle aim and alignment, pages 128, 133

Custom headers provide structure, simple plumbing, and ideal nozzle placement, page 143

Tip configurations: Threaded bases and caps, page 126

Special accessories for dovetail fan nozzles provide presetting of the spray alignment, page 132

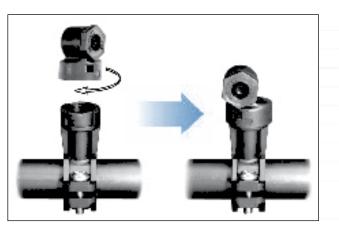
Strainers to prevent clogging and check valve assemblies to prevent dripping, pages 131, 132

Split eyelet mounts for custom headers, page 130

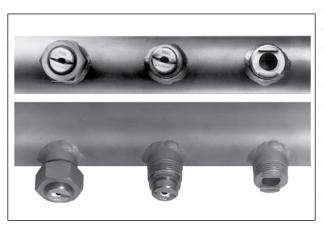
.

10 M

TWISTLOC and bayonet quick release systems: TWISTLOC stainless steel and brass bases and caps, pages 131-133


Plastic bayonet bases and caps, pages 131-133

Split eyelet bayonet mounts, page 135


Custom headers: Brush and flush header systems, page 144

Fabricated headers, page 142-143

For quick reference, Lechler's mounting options are illustrated in the Accessories section of this catalog, page 129

Bayonet quick release system

Dovetail guide

Tank cleaning nozzles

Beverage industry Bioengineering Chemical industry Cosmetic industry Food industry Pharmaceutical industry Tank building and many others...

The following step-by-step procedure will help you define your cleaning task and get the most out of our products.

Begin by analyzing your cleaning task:

- How large is the tank in terms of size and interior surface area?
- Where is the dirt located; how bad is it; and what is its nature?
- Which method of cleaning is required: strong blasts of cleaner or repetitive rinsing?
- What kind of cleaning fluid products are you using?
- Are there any internal obstacles (e.g., mixing blades, baffles, etc.)?
 More information on
- More information of page 21.

When planning your tank cleaning nozzle installation, be sure to observe the following four parameters:

1) Rinsing effect a function of flow rate

Determine the required liquid flow rate by testing the applied pressure and the liquid's ability to clean the dirt from the tank's surface.

- As the nozzle head revolves, it should cover the entire area to be cleaned with an effective amount of cleaning liquid.
- In comparison with rotational cleaners, static spray balls require roughly twice as much liquid flow.
- Remember: Your drain must be able to handle the flow rate of what you're putting in the tank.
- More information on flow rate guidelines on page 25.

2) Force of impact helps strip off crusty dirt

The force of impact depends upon:

- Adherence to the optimal operating pressure range for the type of nozzle in use.
- The right cleaning radius and volumetric flow for the size of tank in guestion.
- Concentration of the spray jets on the most badly soiled areas, e.g., 270° up or down.

As pressure increases, relative droplet size (mass) decreases. If pressure is elevated too high, an ineffectual mist is created. Increasing flow rate rather than pressure is a more efficient method of increasing impact. Lechler highly suggests contacting us if you have an application requiring operating pressures outside of the ranges for tank cleaning products listed herein.

3) Proper positioning for optimal targeting

- In case of internal obstacles, either use several nozzles or place the nozzle at different locations.
- Slowly rotate any mixing blades or the like during the cleaning process.
 See "Typical Applications" box on page 21 for nozzle positioning assistance.

Application suitability – ensures safe operation

- When using any type of plastic spray nozzle, there is the possibility for static charge buildup that could create potential problems in some applications.
- For all tank applications involving combustible gas, flammable liquids, and/or other potentially explosive materials, please consult Lechler prior to purchasing tank cleaning nozzles.
- ATEX comprises two EU (European Union) directives describing what equipment and work is allowed in an explosive atmosphere. For companies in such areas who must also follow EU directives, Lechler makes tank cleaning nozzles which have ATEX approval. Contact Lechler for more information.

Contact Lechler for assistance in evaluating your particular tank cleaning application.

Rotating tank cleaning nozzle advantages

- Low-pressure application for lower energy consumption.
- Increased cleaning effectiveness due to fluid flow movement compared to static spray.

Types of rotating tank cleaning nozzles:

Free-spinning heads

The cleaning liquid turns the spray head by means of specially positioned nozzles. The greater the inlet pressure, the faster the head rotation. Repetitive impact cleans the tank surfaces. The effect is best at low pressures in small to medium-size tanks.

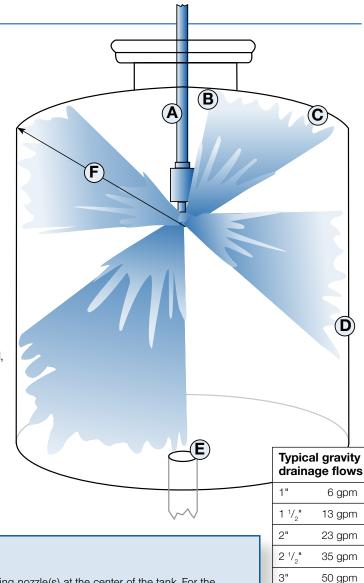
See pages 26-30, 33-36, and 39 for free-spinning nozzle design families

Internal regulated drive

The liquid flow powers the head by way of an internal propeller. This keeps the speed of the head within its optimal range across a wider span of pressures, and the nozzle creates more powerful spray impact.

See page 37 for XactClean[®] HP nozzles

Programmed rotation machines


One variation of the internallyregulated drive is the programmed machine. Here, the cleaning fluid drives an internal gear reducer that keeps the sprayer turning in two planes. During a spray cycle, the jets sweep the entire tank interior following a programmed pattern. These models generate the highest impact and are therefore ideal for very large tanks and the toughest of cleaning tasks.

See page 40 for the 5TM design family

Static spray balls

Static spray balls do not rotate, so they require a comparatively large amount of liquid in order to generate turbulent flow, up to 2 to 3 times the amount compared to rotating nozzles. They are not as effective for most cleaning tasks as a comparable rotating nozzle. Their advantages include (1) having no moving parts. (2) being self draining, and (3) being traditionally used in sanitary environments. Whereas if a rotating nozzle stops turning, its cleaning effectiveness suffers, this is not a concern with a static ball. However, if a static ball has any of its orifices clogged, this can result in voids in coverage. Static balls are used primarily for washing down relatively small tanks and vessels.

See pages 31-32 for spray balls

Typical applications

- A Position the tank cleaning nozzle(s) at the center of the tank. For the best nozzle depth location in the tank, see point (C) below.
- B Nozzles invariably leave an unsprayed shadow area directly overhead, the size of which varies according to the type of nozzle and the piping.
- (C) The distance between the top of the tank and the nozzle should amount to 40%-70% of the nozzle's cleaning radius. Size your unit to ensure sufficient flow to the top part of the tank wall. Nozzles work under a "line of sight" principle. You may need more than one nozzle to eliminate spray shadowing produced by internal components of a tank, such as mixers, agitators, dip tubes, etc. Generally, the nozzle should be located so that it is at least 1/2" to 1" above the maximum fill level of the tank so that the nozzle does not become submerged in the product of the tank. Also, the nozzle should be located in the upper third of the tank height to ensure cleaning of the top as well as to take maximum use of the cascading effect of the cleaning fluid against the walls of the tank.
- (D) The film of liquid grows thicker toward the bottom of the tank, where the washing effect is the most pronounced.
- (E) Standing water reduces impact and allows solids to accumulate. Make sure that the drain can handle whatever you put into the tank (see chart at right).
- (F) The critical spray distance is from the nozzle to the top corner, so the nozzle should be sized for this "effective washing distance".
- All pressure data is stated in terms of differential pressure directly at the nozzle, so be sure to take the line-pressure drop into account.

21

4"

5"

6"

7"

8"

9"

10"

91 gpm

142 gpm

204 gpm

278 gpm

363 gpm

459 gpm

567 gpm

Mounting configurations

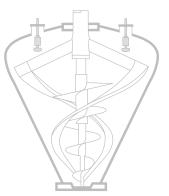
All Lechler tank cleaning nozzles are designed to be mounted on a pipe or tube. However there are several options for making the connection:

Threaded

Most designs use a female pipe thread for mounting on a male threaded pipe.

Slip-on

Nozzles for sanitary use do not use threads but slip around the end of a tube that has a cross hole drilled. A pin is then inserted to hold the head in place.


Tri-Clamp

Some manufacturers use tri-clamp connectors to join pipe. Lechler makes tank cleaning nozzles which have a compatible flange to mate with those. Each product section describes the mounting options in detail.

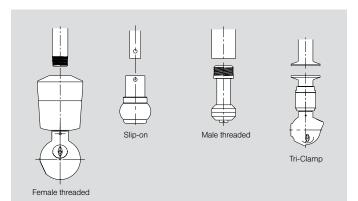
CIP nozzles for sanitary applications

Some installations leave the cleaning nozzle in the tank during production cycles such that it has contact with the product. If the product is critical, such as food or pharmaceutical materials, the nozzle has to be designed following specific protocols so that it will not contaminate the product.

See pages 32 and 35 for CIP nozzles

Typical washing sequences

A thorough tank cleaning sequence depends on the interaction between the soil, the cleaning solution and spray impact. The following sequence of steps are used in many applications:


- Pre-rinse Begin with low grade or "used" water to rinse the interior, washing out the heaviest soil.
- Alkali wash Use a mild solution such as 1% sodium hydroxide or trisodium phosphate. This removes most types of deposits.
- Second rinse Follow with cleaner water to rinse out the alkali. This water can be used next time for the prerinse.
- Acid wash A mild acid wash will neutralize any alkalinity and remove mineral deposits
- Final rinse Use your cleanest water as the final step.

This approach may not be suitable for every application but it is adaptable. The degree of soiling in the tank and the cleaning chemical selected to clean it will determine how many times you can use the same chemicals and rinse water. If the pre-rinse is effective, it can extend the life of chemicals in the other steps.

Documentation

Once the sequence is established, all steps of the process should be documented for consistency in future operations. This includes many operational details:

- Washing sequence with number of execution times for each step
- Cleaning chemical selection and concentration
- Washing temperatures and pressures
- Maximum time between the shut-down of the process and cleaning cycle
- Operation of any internal equipment, mixers, etc.
- Manual valve settings, equipment disassembly or other personnel-dependent operations
- Order information and operation parameters of the installed nozzle

Service and support

Rent vs. own

As mentioned below, each 5TM (M20) customer may choose to maintain their own unit by following the directions in the Operation Manual. But for even greater ease of maintenance, send your unit to Lechler and let our service staff do all of the maintenance work for you. We have years of experience in maintaining these units and guarantee to return your freshly-refurbished unit back to you within 48 hours of our receiving it. So let our experienced staff take the worry out of the maintenance of your 5TM (M20) machine.

The purchase of a Lechler 5TM (M20) High Impact Tank Cleaning Machine is a major decision. To help assist you in this decision-making, Lechler offers its customers the option of renting an 5TM (M20) first. And if you eventually decide to purchase that unit, all rental fees paid to that point will be applied to the purchase price. While rentals are generally for trials by our customers, we at Lechler feel confident that once you have used your 5TM (M20) machine, you won't want to be without it again.

The five factors of cleaning

Tank cleaning, or any type of cleaning for that matter, is the result of four interrelated factors which can be manipulated for the greatest effectiveness:

- Temperature
- Chemical Reaction
- Mechanical Force
- Time
- Soil Composition

A tank cleaning nozzle (or machine) requires fluid (typically water) of a certain temperature, some type of chemical cleaning agent to interact with the cleaning medium, the mechanical action of the nozzle (typically its rotation) to project the fluid, and a period of time for the cleaning to occur. If any factor's effectiveness is reduced, it

must be compensated by one or more of the other factors in order to ensure proper cleaning. For instance, to reduce the cleaning time for a tank, a greater inlet pressure (mechanical force) may need to be applied for higher impact and faster soil removal. Hotter water (temperature) for assistance in loosening that soil may also be required and perhaps even a greater amount of soap (chemical reaction) is needed to further assist the soil removal. And in comparing the two most common tank cleaning methods, a spray ball requires much more time and chemical action to clean when compared to a typical Lechler rotating nozzle, which relies more on the mechanical force of the rotating head (therefore using less time) to get the job done.

5TM (M20) Operation Manual

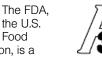
If you purchase our 5TM (M20) High Impact Tank Cleaning Machine, you will receive an Operation Manual for the unit. This manual explains how to maintain your unit for a long, reliable service life. This can either involve simply sending the unit to Lechler for regular maintenance or following the instructions in the manual for self-maintenance of the unit. Let this manual be your guide to years and years of effective tank cleaning.

Tank cleaning design assistance

If you need to design a tank cleaning system for your application, let Lechler assist you. We have more than 25 years of experience in designing and manufacturing tank cleaning products for any size job. If you go to our web site, www.lechlerusa.com, you can access a questionnaire which you can complete and email to Lechler for assistance in selecting the right nozzle(s) and quantity for your application.

ECHIER

Questionnaire Lechler Tank cleaning nozzles



Nozzle selection guide

Food & Drug Administration, is a federal agency which oversees those two industries. Where so noted in the catalog. materials used in making Lechler products are complaint with the requirements of FDA regulation 21 CFR for use in food applications.

the U.S.

The 3-A council is a U.S. organization which has set up a comprehensive inventory of 78-03 sanitary standards

and accepted practices for food and dairy processing equipment and systems. Manufacturer's equipment must meet these standards before the 3-A symbol is authorized to be used with it.

Chart Heading Explanations

Tank diameter cleaning range

This is the range of sizes of the largest spherical tank in which the given tank cleaning product, while operating at the maximum recommended pressure, can deposit a thick film of liquid with a high force of impact.

Tank diameter rinsing range This is the range of sizes of the

largest spherical tank that can be covered with a somewhat thinner film of water by the given tank cleaning product operating at the maximum recommended pressure.

Operating pressure

This is the recommended range for maximum cleaning efficiency. The individual product tabulations may extend beyond these levels.

ATEX product $\langle E_X \rangle$ availability

Lechler offers specific tank cleaning nozzles that conform to Directive 94/9/AC (ATEX) for European Union (EU) organizations for use in applications where an explosion hazard may exist. Please consult Lechler, Inc. if you have any questions regarding use of our products in your application.

Flow rate range

This term includes the smallest through the largest flow rates in a family across the recommended pressure range.

Safe use of products

Lechler, Inc. bears responsibility towards all of its spray products to (1) be free of manufacturing defects and (2) perform within normal tolerance values for the specific flow and coverage

parameters that have been established. The customer using our products is responsible for the safe use and suitability of our tank cleaning products.

Explosion protection

Due to the occurrence of static electricity, plastic heads are not suitable for spraying combustible cleansing media in potentially explosive atmospheres.

The following table will help you compare the various characteristics of Lechler's diverse products. The basic technical data of each design family is provided here to enable quick selection of the most suitable type(s).

Series	Page	Type of rotation	Cleaning mechanism/ action	Tank diameter cleaning range (Ø ft.)	Tank diameter rinsing range (Ø ft.)	Operating pressure (psi)	Flow rate range (gal./min.)	Coverage options
PicoWhirly 500 MicroWhirly 500.191, 566	26-28	Free spinning	Flat fan, solid-stream nozzles	up to 5	up to 6	0 15 30 45 60 75 90 105	3-6	360° 300° 180°s
PopUp Whirly 5P2/5P3	29	Free spinning, friction bearing	Flat fan nozzles	3-5	5-7	0 15 30 45 60 75 90 105	2-12	200°
Hygienic Whirly 594/595	30	Free spinning, friction bearing	Flat fan nozzles	5-8	8-12	0 15 30 45 60 75 90 105	1-20	360°
Spray ball 540/541, 527 (3A)	31-32	No rotation, static spray	Solid stream nozzle, max. impact	5-25	8-35	0 15 30 45 60 75 90 105	4-155	360° 240°
Spinner 5MC/5MI	33	Free spinning, ball bearing	Flat fan nozzle, wash-down actions	4-9	6-12	0 15 30 45 60 75 90 105	6-21	360° 180° 60°
Stainless Steel Whirly 569	34	Free spinning, ball bearing	Flat fan nozzle, washdown action	4-10	10-15	0 15 30 45 60 75 90 105	15	360° 180°
Teflon Whirly 583/573 (3A) Hi-Temp Whirly 599	35-36	Free spinning, friction bearing	Solid stream nozzle, wash- down actions	4-10	10-15	0 15 30 45 60 75 90 105	18-70	360° (270°s
XactClean® HP 5S2/5S3	37	Controlled rotation, Internal turbine	Flat fan nozzles, high impact	10-20	15-30	0 15 30 45 60 75 90 105	3-54	360°
IntenseClean Hygienic 5TA/5TB	38	Gear-controlled	Solid stream, high impact	42-46	26-39	0 30 60 90 120 150 180 210	30-100	360°
Gyro 577	39	Free spinning, friction bearing	Flat fan nozzle, Solid stream, high impact	8-20	25-40	0 15 30 45 60 75 90 105	35-429	360° 180°s
Tank Cleaning Machine 5TM	40	Gear-controlled	Solid stream nozzle, max. impact	20-50	40-75	0 15 30 45 60 75 90 105	40-110	360°

Spherical

Interior Surface (sq. feet)	Rinse (gpm)	Regular Wash (gpm)	Heavy Wash (gpm)
28	1	3	6
50	2	5	10
79	4	8	16
113	5	11	23
154	7	15	31
201	9	20	40
254	11	25	51
314	14	31	63
452	20	45	90
707	32	71	141
1256	57	126	251
1963	88	196	393
2826	127	283	565
3847	173	385	769
5024	226	502	1005
	Surface (sq. feet) 28 50 79 113 154 201 254 314 452 707 1256 1963 2826 3847	Surface (sq. feet) (gpm) 28 1 50 2 79 4 113 5 154 7 201 9 254 11 314 14 452 20 707 32 1256 57 1963 88 2826 127 3847 173	Surface (sq. feet) (gpm) (gpm) Wash (gpm) 28 1 3 50 2 5 79 4 8 113 5 11 154 7 15 201 9 20 254 11 25 314 14 31 452 20 45 707 32 71 1256 57 126 1963 88 196 2826 127 283 3847 173 385

Short Cylinder (height = diameter)

	·		·		·
Diameter (feet)	Height (feet)	Interior Surface (sq. feet)	Rinse (gpm)	Regular Wash (gpm)	Heavy Wash (gpm)
3	3	42	2	4	8
4	4	75	3	8	15
5	5	118	5	12	24
6	6	170	8	17	34
7	7	231	10	23	46
8	8	301	14	30	60
9	9	382	17	38	76
10	10	471	21	47	94
12	12	678	31	68	136
15	15	1060	48	106	212
20	20	1884	85	188	377
25	25	2944	132	294	589
30	30	4239	191	424	848
35	35	5770	260	577	1154
40	40	7536	339	754	1507

Flow rate guidelines

These charts can help you choose a tank cleaning nozzle based on its size and configuration. Find the closest shape and size to yours and match the color to the key at the bottom. For purposes of flow sizing, we recommend evaluation based on flow per unit of interior surface area. For most washing applications using a rotating nozzle, a flow rate of 0.1 gpm per square foot of interior surface area is sufficient. This ensures coverage with a full sheet of liquid at the least adequately washed areas of the tank.

Light rinsing with full coverage requires at least 0.04 gpm per square foot. With less than that, there will be areas where the flow can tend to pull itself into channels.

Heavier washing will require greater flows. In severe cases, it can require as much as 0.2 gpm per square foot or more.

Static spray balls require at least 0.2 gpm per square foot (heavy wash column).

Tank cleaning machines, like the 5TM, should be sized using a different approach discussed on page 40. This includes the number of nozzles on the machine and the desired cycle time for a complete revolution.

> SMALL SPRAY BALLS "Mini designs" Small PVDF 500 Pop-up 5P2/5P3 Low capacity 582/5S3 or 594/595 High capacity 595 Low capacity 569 or 583 High capacity 569 or 583 LARGE SPRAY BALLS High capacity 5S3 High capacity 5S3

> > 25

Medium Cylinder (height = 1.5 x diameter)

Diameter (feet)	Height (feet)	Interior Surface (sq. feet)	Rinse (gpm)	Regular Wash (gpm)	Heavy Wash (gpm)
3	4.5	57	3	6	11
4	6.0	100	5	10	20
5	7.5	157	7	16	31
6	9.0	226	10	23	45
7	10.5	308	14	31	62
8	12.0	402	18	40	80
9	13.5	509	23	51	102
10	15.0	628	28	63	126
12	18.0	904	41	90	181
15	22.5	1413	64	141	283
20	30.0	2512	113	251	502
25	37.5	3925	177	393	785
30	45.0	5652	254	565	1130
35	52.5	7693	346	769	1539
40	60.0	10048	452	1005	2010

Tall Cylinder (height = 2 x diameter)

Diameter (feet)	Height (feet)	Interior Surface (sq. feet)	Rinse (gpm)	Regular Wash (gpm)	Heavy Wash (gpm)
3	6	71	3	7	14
4	8	126	6	13	25
5	10	196	9	20	39
6	12	283	13	28	57
7	14	385	17	38	77
8	16	502	23	50	100
9	18	636	29	64	127
10	20	785	35	79	157
12	24	1130	51	113	226
15	30	1766	79	177	353
20	40	3140	141	314	628
25	50	4906	221	491	981
30	60	7065	318	707	1413
35	70	9616	433	962	1923
40	80	12560	565	1256	2512

PicoWhirly – for cleaning compact spaces Series 500

PicoWhirly series 500.234

Product features:

- Unique extremely compact nozzle design
- All stainless steel Kolsterized
- Slide bearing
- Free spinning, self-lubricating, and self-flushing
- Operates in every position
- FDA Compliant (see page 24)

Applications:

Kegs

Tank cleaning

- Cans
- Bottles
- Autoclaves
- Barrel washers
- Machines

Max. tank diameter: 3 ft.

Operating pressure: 40 psi

Max. fluid temperature*: 400°F

Weight:

.025 lb.

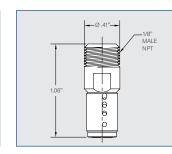
Material:

Kolsterized 316L SS

Bearing:

Sleeve bearing

Filtration:


Line strainer with 50 mesh size

* Contact Lechler for maximum ambient temperature.

26

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Spray Angle		Ordering no.						Flow Rate (Gallons Per Minute)			
Angle	Type Connection					Free Passage		liters per minute			
\$		¹ /8" Male NPT	³ /8" Male NPT	³ /8" Female NPT	³ /4" OD Slip-on	만 없 (in.)	20 psi	2 bar	40 psi	60 psi	
300° down	500. 234. G9	BA	-	-	-	.07	1.8	8	2.5	3.0	

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	500. 234. G9	+	BA	=	500. 234. G9. BA

Series 500

Miniature stainless steel rotating nozzles – compact design with powerful spray impact Series 566

Stainless Steel Micro Whirly series 566

Product features:

- Very compact design
- Free spinning, self-lubricating, and
- self-flushingOperates in every position
- Suitable for use with steam
- FDA Compliant (see page 24)

Applications:

- Kegs
- Cans
- Bottles
- · Autoclaves
- Barrel washers
- Machines

Max. tank diameter: 5 ft.

Operating pressure:

40 psi

Max. fluid temperature*: 266°F

.1 lb.

.2 lb.

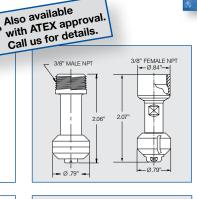
Weight:

566 thread 566 slip-on

Material:

316L SS PEEK

Bearing:


Sleeve bearing

Filtration:

Line strainer with 50 mesh size

Series 566 slip-on

Spray Angle		Or	dering no.		Flow Rate (Gallons Per Minute)					
-	Туре		Conn	ection		Free Passage		liters per minute		
4		1/8" Male NPT	³ /8" Male NPT	³ /8" Female NPT	³ /4" OD Slip-on	正 凸 (in.)	20 psi	2 bar	40 psi	60 psi
180° up	566. 873. 1Y	-	BE	BF	TF07	.04	3.3	15	4.7	5.7
	566. 933. 1Y	-	BE	BF	TF07	.04	4.6	21	6.5	8.0
180° down	566. 874. 1Y	-	BE	BF	TF07	.04	3.3	15	4.7	5.7
	566. 934. 1Y	-	BE	BF	TF07	.04	4.6	21	6.5	8.0
360°	566. 879. 1Y	-	BE	BF	TF07	.04	3.3	15	4.7	5.7
	566. 939. 1Y	-	BE	BF	TF07	.04	4.6	21	6.5	8.0

Please note: We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 50 mesh size. For further information, please contact Lechler.

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	566. 939. 1Y	+	BE	=	566. 939. 1Y. BE

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Miniature plastic nozzles compact design with powerful spray impact Series 500

PVDF Micro Whirly series 500.191

Product features:

- Good corrosion resistance
- Very compact design
- Free spinning, self-
- lubricating, and self-flushing
- Operates in every position
- Fits 1/2" NPT connections
- FDA Compliant (see page 24)

Applications:

Kegs

Tank cleaning

- Cans
- Bottles
- Autoclaves
- · Barrel washers
- Machines

Max. tank diameter: 5 ft.

Operating pressure: 30 psi

Max. fluid temperature: 19°F

Weight: .06 lb.

Material: PVDF

Bearing: Sleeve bearing

Plastic Mini Whirly series 500.186

Product features:

- Good corrosion resistance
- Very compact design
- Free spinning, selflubricating, and self-flushing
- Operates in every position
- Fits 1/2" NPT connectionsFDA Compliant

(see pagė 24)

- Applications:
- Kegs
- CansBottles
- Autocl
- AutoclavesBarrel washers
- Barrel washe
 Machines
- machines

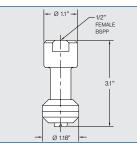
Max. tank diameter: 5 ft.

Operating pressure: 30 psi

Max. fluid temperature: 122°F

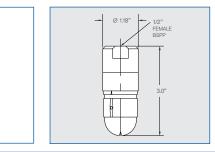
Weight: .15 lb.

Material: PVDF


Bearing: Ball bearing

Filtration: Line strainer with 50 mesh size

28

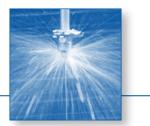


Filtration: Line strainer with 50 mesh size

Spray angle	Ordering no.	Free Passage (in.)	Connection	Flow Rate (Gallons Per Minute)				
A						liters per minute		
				20 psi	30 psi	2 bar	40 psi	60 psi
180°	500. 191. 5E. 02	.086	1/2" Female BSPP	2.9	3.5	13	4.0	4.9
180°	500. 191. 5E. 01	.086	1/2" Female BSPP	2.9	3.5	13	4.0	4.9
360°	500. 191. 5E. 00	.086	1/2" Female BSPP	4.4	5.4	20	6.2	7.6

Spray angle	Ordering no.	Free Passage (in.)	Flow (Gallons Pe						
			20 psi	30 psi	liters per minute 2 bar	40 psi	60 psi		
300°	500. 186. 56. AH	.075	4.0	4.8	18	5.6	6.8		

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.


Please note: We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 50 mesh size. For further information, please contact Lechler.

1-800-777-2926

500.186

Rotating pop-up nozzles – "PopUp Whirly" Series 5P2 / 5P3

PopUp Whirly series 5P2 / 5P3

With minimal liquid pressure, this nozzle pops up and rotates to clean. Can be installed in container wall or used when installation conditions are difficult due to presence of agitators, baffles, etc. Appropriate for CIP when nozzle cannot remain in container during production.

Product features:

- For installation in the tank wall
- Suitable for cleaning with foam
- Self rotating
- FDA Compliant (see page 24)

Applications:

- For cleaning and rinsing of small tanks, containers or duct work
- Where nozzle cannot remain in container during production
- Hard-to-reach areas in a vessel

Operating pressure:

30 psi, 5P2: opening pressure approx. 14.5 psi; closing pressure approx. 7 psi, 5P3: opening pressure approx. 13 psi, closing pressure approx. 7 psi

Max. fluid temperature: 284°F

Weight:

5P2 series approx. .66 lb. 5P3 series approx. 1.21 lb.

Bearing:

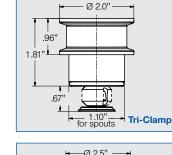
Sleeve bearing made of PEEK

Filtration:

Line strainer with 50 mesh size

Note Tri-Clamp Version:

Gasket with a thickness of .08 in. must be used with weld-in-flange.

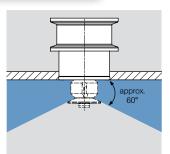

Not sold with nozzle. 5P2 requires standard DIN32676-A / DN40 5P3 requires standard DIN32676-A / DN50

Ø 2.0"

1 1/4 BSPP

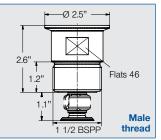
1.81"

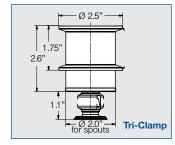
.86"


.67

.

Hex 36


Male


thread

Material:

316L stainless steel, spring made of 301 stainless steel, PEEK, O-ring made of EPDM

approx.

Material:

316L stainless steel, spring made of 301 stainless steel, PEEK, O-ring made of FPM

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Spray angle	Ordering no.	Ta conne	nk ection	Free Passage	Flow Rate (Gallons Per Minute)					
Å		1 ¹ /4" Male BSPP	Tri Clamp	(in.)	20 psi	30 psi	liters per minute 2 bar	40 psi		
	5P2. 873. 1Y. AP	0	-	.04	3.3	4	15.0	4.7		
	5P2. 873. 1Y. 00	-	0	.04	3.3	4	15.0	4.7		
	5P2. 923. 1Y. AP	0	-	.04	4.4	5.4	20.0	6		
	5P2. 923. 1Y. 00	-	0	.04	4.4	5.4	20.0	6		
	5P3. 043. 1Y. AP	0	-	.05	3.3	4	15	4.7		
	5P3. 043. 1Y. 00	-	0	.05	3.3	4	15	4.7		

Hygienic Whirly designed to clean with foam Series 594 / 595

2.65

Material PEEK

Series 594 / 595

The hygienic Whirly is specifically designed for both (1) cleaning with foam from a mixture of liquid detergent and water and (2) sterilizing with steam. Optionally available as part of a fabricated lance containing two Hygienic Whirlies for even greater coverage.

Product features:

- Low water and detergent consumption
- Optimum cleaning efficiency due to slow rotation
- Sprays steam for sterilizing purposes
- Operates in any position FDA Compliant
- (see page 24)

Applications:

For cleaning of:

- Tanks with liquids and/or with foam from detergent/ water mixtures
- Bottling machines, especially for cold aseptic filling

Max. tank diameter:

5 feet

Type 595.139.1Y up to 8 feet

Operating pressure: 40 psi

Max. fluid temperature*:

212°F; short-term up to 284°F

Weight:

594 .4 lb. 595 .6 lb.

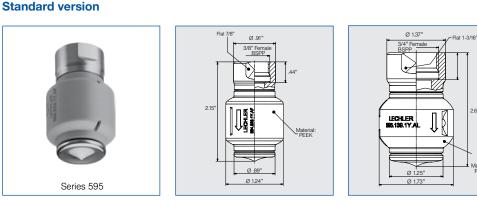
Material:

316L stainless steel PEEK

Bearing:

Sleeve bearing

Filtration:


Line strainer with 50 mesh size

30

* Contact Lechler for maximum ambient temperature.

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Spray Angle	Orderin Type	g no. Conne	ection	Φ	Flow Rate (Gallons Per Minute)				
\$	туре	³ /8" Female BSPP**	³ /4" Female BSPP**		7 psi	15 psi	liters per minute 2 bar	30 psi	40 psi
360°	594. 829. 1Y	AF	-	.067	1.4	2.1	11	3.0	3.4
	594. 879. 1Y	AF	-	.098	1.9	2.9	15	4.0	4.7
	595. 009. 1Y	AF	-	.157	4.2	6.1	32	8.6	9.8
	595. 049. 1Y	AF	-	.165	5.2	7.6	40	10.7	12.4
	595. 139. 1Y	-	AL	.197	8.7	12.7	67	18.0	20.8

** NPT on request.

Please note: To protect the products' inner workings, we suggest use of a line strainer with a 50 mesh size. For further information, please contact Lechler.

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

Static Spray Balls for rinsing or producing steam Series 540 / 541

Series 540 / 541

This nozzle is a very compact static spray ball. As it produces sharp solid jets, it is excellent for rinsing small drums.

Product features:

- For use with air or saturated steam
- Partial coverage (240°)

Applications:

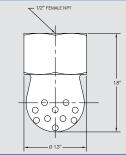
- Small kegs •
- Drums
- Barrel washers
- Totes
- Carboys

Max. tank diameter:

Rinsing: 10 ft. Cleaning: 5 ft.

Operating pressure: 45 psi

Max. fluid temperature: 392°F


Weight: .20 lb.

Material: 303 SS

Filtration: Line strainer with 50 mesh size

Spray Angle	Ordering no.	e	Connection		Flow (Gallons P	Rate er Minute)		Length (in.)	Maximum Width
¢		(iui) Free ('ui)	Female NPT	20 psi	liters per minute 2 bar	40 psi	60 psi		(in.)
240° down	540. 909. 16. BH	.031	1/2"	4	18	6	7	1.8	1.3
	540. 989. 16. BH	.039	1/2"	6	28	9	11	1.8	1.3
	541. 109. 16. BH	.059	1/2"	13	57	18	22	1.8	1.3
	541. 189. 16. BH	.079	1/2"	20	90	28	34	1.8	1.3
	541. 239. 16. BH	.090	1/2"	26	118	37	45	1.8	1.3

Please note: To protect against clogging, we suggest use of a line strainer with an appropriate line strainer sized to trap particles larger than the free passage. For further information, please contact Lechler.

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Static Spray Balls – for sanitary CIP applications Series 527

Series 527

For critical sanitary applications Lechler provides these specially designed spray balls:

Product features:

- Meets the requirements of 3A standards
- Very fine surface finish inside and outside
- All mount using slip-on fittings and pins
- For use with air or saturated steam
 FDA Compliant
- (see page 24)

Applications:

Tank cleaning

 For sanitary environments, e.g., dairies, pharmaceutical processing, food and beverage manufacturing, high purity chemicals

Max. tank diameter:

3/4" inlet	17 ft.
1-1/2" inlet	20 ft.
2" inlet	27 ft.

Operating pressure:

15 - 45 psi, max. 75 psi

Max. fluid temperature: 400°F

Weight:

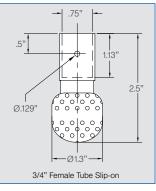
3/4" inlet	.11 lb
1-1/2" inlet	.52 lb
2" inlet	1.43 lb

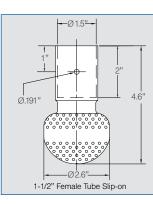
Material:

316L stainless steel

Filtration:

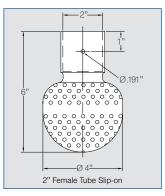
3/4" — Line strainer with 50 mesh size


1-1/2" — Line strainer with 50 mesh size


2" — Line strainer with 30 mesh size

Note: There are no threaded inlets available.

32



Fulfills the hygienic requirements of

3-A*.

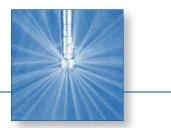
Spray angle	Ordering no.	Free Passa-	assa- (Gallons Per Minute)			Dimensions approx. (in.)					
A		ge (in.)	20 psi	2 bar	40 psi	60 psi	Height H (in.)	Diameter D (in.)	в	С	A
360°	527. 209. 1Y. 00. 75	.031	13	60	19	23	2.7	1.3	.75	.13	.50
	527. 289. 1Y. 01. 50	.043	37	170	53	65	4.6	2.6	1.51	.19	1.00
	527. 449. 1Y. 02. 00	.067	92	420	130	160	6.0	4.0	2.01	.19	1.00

The 3/4" spray ball has a minimum orifice size of .033". The 1-1/2" spray ball has a minimum free passage size of .045".

The 2" spray ball has a minimum free passage size of .043

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

* This product has been authorized to use the 3-A® Symbol by the 3-A® Sanitary Symbol Council Administrative Council for Spray Cleaning Devices (78-01).


For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Static Spray Balls -**RinseClean** Series 5B2/5B3

Series 5B2/5B3

The spray ball design has proven itself in many applications. It can be used in areas with high hygienic requirements and high temperatures. Our RinseČlean spray ball is available with various slip-on connections, as well as in

threaded or welded versions.

Product features:

- Very fine surface finish inside and outside
- For use with air or saturated steam
- FDA Compliant

Applications:

For sanitary environments, e.g. pharmaceutical processing, food and beverage manufacturing, high purity chemicals

Max. tank diameter:

1/8" inlet	7 ft.
1/2" inlet	11 ft.
1" inlet	17 ft
2" inlet	18 ft.

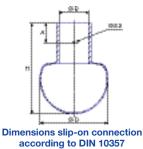
Operating pressure:

30 psi

Max. fluid temperature: 392°F

Weight:

3/4" inlet	.11 lb.
1-1/2" inlet	.52 lb.
2" inlet	1.43 lb.


Material:

316L stainless steel

Series 5B2/5B3

Pin	Ordering no.
1	095.013.1Y.06.55.0
2	095.013.1Y.06.58.0
3	095.013.1Y.06.56.0
4	095.013.1Y.06.59.0
5	095.013.1Y.06.57.0

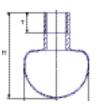
Slip-on connection

Pin 2-5

With the slip-on connection, the spray ball is pushed onto the customer's connection pipe and secured with the supplied R-clip. Lechler offers the right connection sizes for the three most common pipe standards.

Slip-on information

- Pin made of 316L SS is included. Ordering no.: See table on page 3
- Depending on diameter of adapter, the flow rate can increase due to leakage between connecting pipe and static spray ball.


Slip-on connection according to DIN EN 10357 series D (ASME BPE 1997, OD tube compatible)

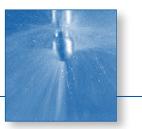
Pin 1

Spray	Ordering no.	Е		Flow Rate					Dimensions [in]							
angle	Туре	Ø [in]	20 psi	(Gal 30 psi	llons per minute) liters per minute 40 60 2 bar psi psi			Ø D	Height H	Con- nection B	Distance to bore hole A	Pin				
360°	5B3.089.1Y.A1.00.0	.04	10.9	13.4	50	15.5	19	1.10	1.65	0.39	.35	1				
	5B3.209.1Y.A1.90.0	.06	22.0	26.9	100	31.0	38	1.10	1.65	0.76	.35	1				
	5B3.309.1Y.A1.90.0	.07	39.4	48.4	180	55.9	68.4	2.52	3.31	0.76	.71	2				
	5B3.379.1Y.A2.60.0	.08	57.1	69.9	260	80.7	98.8	2.52	3.31	1.01	.71	3				
	5B3.449.1Y.A3.80.0	.12	89.9	110.2	410	127.2	155.8	2.52	3.31	1.51	.71	3				
	5B3.539.1Y.A5.10.0	.13	147.0	180	670	207.9	254.6	3.54	4.37	2.01	.98	5				

E = narrowest free cross-section

Female Threaded connection

The maximum tank diameter shown above applies for the recommended operating pressure and is indicative only. The cleaning result is also affected by the type of soiling.


Spray angle	Ordering no.	Con- nection	E Ø	Flow Rate (Gallons per minute) liters per 20 30 minute 40 60 psi psi 2 bar psi psi					Dimensions [in]		
A	Туре	NPT	[in]						Ø D	Height H	Screw- in length T
360°	5B2.879.1Y.BB.00.0	1/8"	.03	3.4	4.0	15	4.7	5.7	.79	1.5	.31
	5B3.309.1Y.BH.00.0	1/2"	.07	39.5	48.4	180	55.9	68.4	2.5	3.3	.55
	5B3.379.1Y.BN.00.0	1"	.08	57.1	69.9	260	80.7	98.8	2.5	3.3	.71
	5B3.539.1Y.BW.00.0	2"	.12	147.0	180.0	670	207.9	254.6	3.5	4.4	.94

Spinners 2 thin profiles for small openings Series 5M1/ 5M2/ 5M3/ 5M4

Series 5M1/ 5M2/ 5M3/ 5M4

When small tank openings restrict the size of the nozzle, the Spinner 2 series offers high flow rates with a thin profile that will slip into tight spuds.

Product features:

- High flow slot orifices produce big sprays from a small head
- Head balanced for minimum vibration
- Operates in any positionFree spinning, self-
- Free spinning, selflubricating, and self-flushing
 FDA Compliant

(see page 24)

Applications:

- Barrel washing
- For small and medium processing tanks
- CNC machining centers

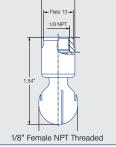
Operating pressure:

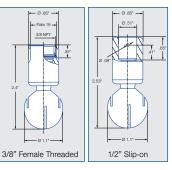
30 psi

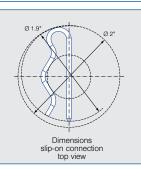
Max. fluid temperature*: 284°F

Materials:

316L SS

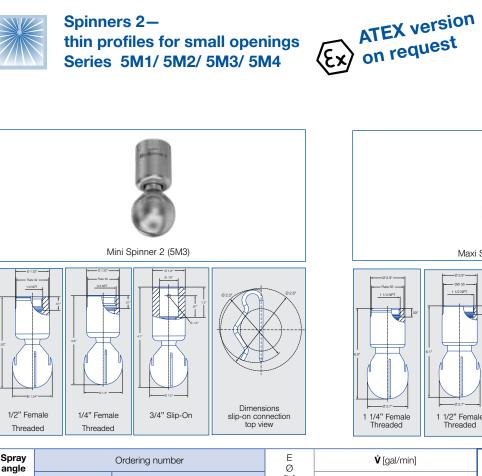

Bearing:

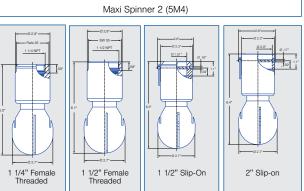

Double ball bearing


Filtration:

Line strainer with 170 mesh size

Spray angle	Ordering number Type 1/8 NPT	E Ø [in]		tank ter [ft]			
	1/0 NF 1		20 psi	30 psi	2 bar	40 psi	Max. tan diameter
360°	5M1.879.1Y.BB	0.016	3.2	4.0	15	4.6	4.6
	5M1.929.1Y.BB	0.019	4.5	5.5	20	6.3	5.2


Spray angle	Orc	E Ø							
	Connect		ection	[in]	p [psi] (p _{max} = 100 psi)				E E
	Туре								Max. tank diameter [ft]
		3/8 NPT	1/2" Slip-on		20 psi	30 psi	2 bar	40 psi	- 5
60°	5M2.952.1Y	BF	TF05	.06	5.0	6.2	23	7.1	-
	5M2.042.1Y	BF	TF05	.12	8.8	10.8	40	12.4	-
180°	5M2.004.1Y	BF	TF05	.04	7.0	8.6	32	9.9	5.9
360°	5M2.969.1Y	BF	TF05	.03	5.6	6.8	25	7.9	5.6
	5M2.049.1Y	BF	TF05	.04	8.6	10.5	39	12.2	5.9


Example	Туре	+	Conn.	=	Ordering no.
for ordering:	5M2. 049. 1Y.	+	BF	=	5M2. 049. 1Y. BF

Please note: The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

Micro Spinner 2 (5M2)

Spray angle		Ordering nu	Imber		E Ø		Ý [g	al/min]		
			Connectio	n	[in]	1	¥ E			
	Туре	1/2 NPT	3/4 NPT	3/4" Slip-on		20 psi	30 psi	2 bar	40 psi	Max. tank diameter [ft]
60°	5M3.122.1Y	вн	-	TF07	.10	13.8	16.6	63	19.5	-
180°	5M3.133.1Y	-	BL	TF07	.05	14.7	18.0	67	20.8	8.5
180°	5M3.134.1Y	-	BL	TF07	.05	14.7	18.0	67	20.8	8.5
360°	5M3.999.1Y	-	BL	TF07	.02	6.6	8.1	30	9.4	5.9
	5M3.089.1Y	-	BL	TF07	.03	10.8	13.2	49	15.2	6.9
	5M3.139.1Y	-	BL	TF07	.03	15.2	18.7	69	21.5	7.5
	5M3.209.1Y	-	BL	TF07	.06	21.9	26.8	100	30.9	8.5

Spray angle		Ord	ering numbe	er		E Ø						
			Con	nection		[in]	[in] p [psi] (p _{max} = 100 psi)*					
A	Туре	1 1/4 NPT	1 1/2 NPT	1 1/2" Slip-on	2" Slip-on		20 psi	30 psi	2 bar	40 psi	Max. tank diameter [ft	
360°	5M4.279.1Y	BQ	BS	TF15	TF20	.07	33.0	40.4	150	46.6	13.1	
	5M4.329.1Y	BQ	BS	TF15	TF20	.08	43.9	53.8	200	62.1	14.8	
	5M4.369.1Y	BQ	BS	TF15	TF20	.09	54.8	67.2	250	77.5	16.4	

Stainless Steel Whirly 2– the versatile standard solution Series 5W9

Series 5W9

The Whirly 2 has a hygienic design, and provides efficient cleaning due to its powerful flat jet sprays. Also available in

ATEX approved version.

Product features:

- Flat jet nozzles with improved vertical coverage
- Better balance for smoother operation
- Slip-on or thread connection available
- Free spinning, selflubricating, and self-flushing
- FDA Compliant (see page 24)

Applications:

 For cleaning small and medium-sized tanks, e.g., in chemical, beverage, food industries

Operating pressure:

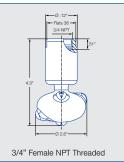
30 psi

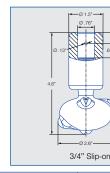
Tank cleaning

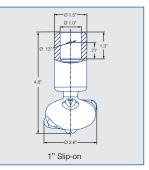
Max. fluid temperature*:

284°F 194°F ATEX version

Material:


316L SS and PEEK R-Clip made of 316L stainless steel included with the tube slip-on. For reordering: 095.022.1Y.50.60.E


Bearing:


Double ball bearing

Filtration:

Line strainer with 170 mesh size

Spray		Order	ing no.		Narrowest free		Nwa	iter [gal/i	minl		Max. tank
angle			Connectior	า	cross section Ø			Iter [gai/i	1		diameter [ft]
	Туре		3/4"-	1"	[in]		p [psi]	(p _{max} = 8	7 psi)		
		3/4 NPT	Slip-on connection	Slip-on connection		20 psi	30 psi	2 bar	40 psi	60 psi	
270°	5W9.075.1Y	BL	TF07	TF10	.79	10.6	12.9	48	15	18.3	5.9
	5W9.145.1Y	BL	TF07	TF10	.11	15.6	19.1	71	22	27.0	6.9
	5W9.195.1Y	BL	TF07	TF10	.13	21.3	26.1	97	30	36.9	8.5
270°	5W9.076.1Y	BL	TF07	TF10	.79	10.6	12.9	48	15	18.3	5.9
	5W9.106.1Y	BL	TF07	TF10	1.0	12.8	15.6	58	18	22.0	6.9
	5W9.196.1Y	BL	TF07	TF10	1.3	21.3	26.1	97	30	36.9	8.5
360°	5W9.079.1Y	BL	TF07	TF10	.06	10.6	12.9	48	15	18.3	5.9
	5W9.149.1Y	BL	TF07	TF10	.09	15.6	19.1	71	22	27.0	6.9
	5W9.199.1Y	BL	TF07	TF10	.12	21.3	26.1	97	30	36.9	8.5
	5W9.279.1Y	BL	TF07	TF10	.20	31.9	39.1	145	45	55.2	9.8

The maximum tank diameter shown above applies for the recommended operating pressure

Please note: We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 170 mesh size. For further information, please contact Lechler.

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	5W9. 279. 1Y.	+	BL	=	5W9. 279. 1Y. BL

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Series 583 / 573

Product features:

- Corrosion resistance
- Lightweight
- Balanced rotating action
- Operates in every position
- 3/4" size fits through a
- 2" opening Slip-on version design
- meets 3A standards
- Smooth surface finish
- Free spinning, selflubricating, and self-flushing FDA Compliant
- (see page 24)

Applications:

· For rinsing of small and medium-sized vessels, e.g. in the dairy, chemical, pharmaceutical or food industries

Max. tank diameter:

Rinsing: 18 ft. Cleaning: 10 ft.

Operating pressure: 30 psi

Max. fluid temperature**: 203°F

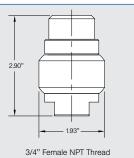
Weight:

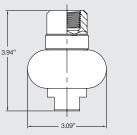
3/4"	.32 lb.
1"	.68 lb.

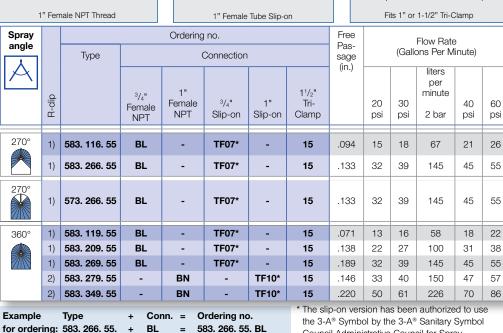
Material:

PTFE R-Clip made of 316L SS included with the tube slip-on. For reordering: 095.022.1Y.50.88.E (3/4'')095.022.1Y.50.60.E (1")

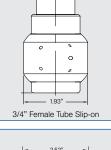
Bearing: Sleeve bearing


Filtration:

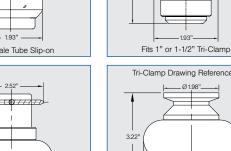

Line strainer with 50 mesh size

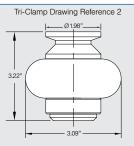

Please note: We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 50 mesh size. For further information, please contact Lechler.

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.



** Contact Lechler for maximum ambient temperature.


For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.



Female Tube Slip-on

1.81"

3

193

Tri-Clamp

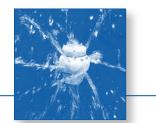
Tri-Clamp Drawing Reference 1

Ø1.98"-

Council Administrative Council for Spray

Cleaning Devices (78-01). See page 24.

www.LechlerUSA.com


LECHLER

PTFE Hi Temp Whirly solution for high temperature cleaning Series 599

599.133

599.133

Series 599

Fank cleaning

While PTFE can withstand high temperatures, its dimensional stability limits its range as a tank cleaning device. Lechler's design incorporates Hastelloy[®] rings to control the expansion of the material so it can continue to operate reliably in hotter environments than normally possible. The nozzle's temperature range is actually extended, since it can perform equally well under normal conditions.

Product features:

- Balanced rotating action
- Operates in every position
- Free spinning, selflubricating, and self-flushing
- Withstands repeated high temperature cycles
- Suitable for low pressure steam; slip-on sanitary model has been tested with steam up to 30 psig @ 274°F.
- FDA Compliant (see page 24)

Applications:

- For small and mediumsized vessels and reactors in higher temperature processing environments
- Corrosive environments

Max. tank diameter:

Rinsing: 18 ft. Cleaning: 10 ft.

Operating pressure: 30 psi

Max. fluid temperature: 274°F

Weight:

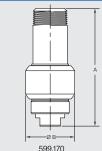
3/4" .36 lb.

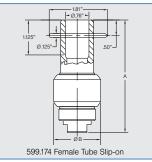
Materials:

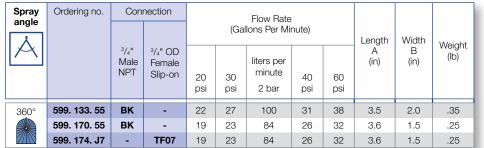
PTFE Rings: Hastelloy[®] C-276 R-clip made of Hastelloy[®] C-276 included with the tube slip on. For reordering: 095.022.24.50.94.1

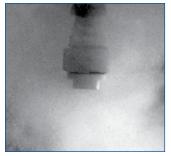
Bearing: Sleeve bearing

Filtration:


Line strainer with 50 mesh size


38


For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.



Please note: We do not recommend operation of these products with compressed air or gases. However, these products have been shown to be suitable for spraying low pressure steam (refer to *Applications* above). To protect the products' inner workings when spraying liquid, we suggest use of a line strainer with a 50 mesh size. For further information, please contact Lechler. The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	599. 170. 55.	+	BK	=	599. 170. 55. BK

Hastelloy® is a registered trademark of Haynes International Inc.

PTFE Whirly spraying steam

XactClean[®] HP solution for high impact cleaning Series 5S2 / 5S3

Series 5S2 / 5S3

Specially developed flat fan nozzles provide high impact and uniform cleaning for the XactClean® HP. The controlled rotation ensures that the XactClean® HP works extremely efficient. Thanks to the robust drive unit the XactClean® HP is very reliable and ensures increased operation liability. It is available in various spray angles and flow rates and is also compatible with the Lechler rotating monitoring sensor.

Product features:

- Controlled rotation
- Powerful flat jet nozzles
- Very efficient tank cleaning nozzle
- FDA Compliant (see page 24)

Materials:

316L SS, 316 SS, 632 SS, PEEK, PEEK ESD (ATEX version only) PTFE, Zirconium oxide, EPDM

Max. temperature: 203°F/ 95°C

Max. tank dimension: 11.5-26 ft.

Recommended operating pressure: 75 psi

Installation: Operation in every direction is possible

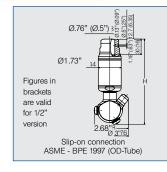
Filtration: Line strainer with a mesh size of 0.3 mm/50 mesh

Bearing:

Double ball bearing

Rotation monitoring sensor:

Sensor compatible, Info: see page 42



Nozzle dimensions [in]

Connection	Н
BF	5.83
BH	5.87
BL	5.47
BN	5.47
TF05	5.91
TF07	6.46

ATEX version

Ex) on request

Spray angle			C	Ordering	no.		Free Pas-	Pas- Flow Rate						
	Туре			(Connectio	on	1	sage (in.)	(Gallons Per Minute)					
		³ /8" Female NPT	^{1/2} " Female NPT	^{3/4} " Female NPT	1" Female NPT	1/2" OD Slip-on	^{3/} 4" OD Slip-on	(11.)	2 bar	30 psi	40 psi	75 psi	145 psi	
270°	5S2. 955. 1Y	BF	BH	-	-	TF05	-	.08	25	6.6	7.8	10.6	15.1	
	5S3. 055. 1Y	-	BH	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	
	5S3. 115. 1Y	-	BH	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	
	5S3. 185. 1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	
	5S3. 235. 1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	
	5S3. 265. 1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	
270°	5S2. 956. 1Y	BF	BH	-	-	TF05	-	.08	25	6.6	7.8	10.6	15.1	
	5S3. 056. 1Y	-	BH	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	
	5S3. 116. 1Y	-	BH	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	
	5S3. 186. 1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	
	5S3. 236. 1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	
	5S3. 266. 1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	
360°	5S2. 959. 1Y	BF	BH	-	-	TF05	-	.07	25	6.6	7.8	10.6	15.1	
	5S3. 059. 1Y	-	BH	-	-	TF05	-	.08	41	10.8	12.8	17.2	24.3	
	5S3. 119. 1Y	-	BH	BL	-	-	TF07	.08	60	15.9	18.4	24.8	35.1	
[2/115]	5S3. 189. 1Y	-	-	BL	-	-	TF07	.08	89	23.5	27.7	37.3	52.6	
	5S3. 239. 1Y	-	-	BL	-	-	TF07	.08	111	29.3	34.3	46.2	65.5	
	5S3. 269. 1Y	-	-	BL	BN	-	TF07	.08	135	35.7	41.8	56.3	79.5	

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	5S2. 956. 1Y	+	BF	=	5S2. 956. 1Y. BF

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

Please note: We do not recommend operation of these products with compressed air. In order to protect the bearing, a line strainer with a 50 mesh size should be used. Operation without a line strainer may result in damage to the nozzle. For further information, please contact Lechler.

The nozzles with a slip-on connection type fitting may have a higher flow rate than listed due to the self-flushing design around the customer's tube which is inserted into the nozzle socket.

High impact tank cleaning machine "IntenseClean Hygienic" Series 5TA / 5TB

5TA

5TB

Product features:

- Gear-controlled Particularly powerful solid iets
- Two different sizes for a variety of container sizes
- Operating pressures up to 362 psi possible
- FDA Compliant (see page 24)

Applications:

- For cleaning of:
- Systems •
- Machines

Tank cleaning

- Tankers
- Large tanks

Max. tank diameter: See table

Operating pressure: 75 psi

Temperature:

203°F, 266°F (Environment)

Weight:

5TA approx. 2 lb. 5TB approx. 8.8 lb.

Materials:

AISI 316L SS AISI 632, PTFE, PEEK, Zirconium oxide, EPDM, 32 RA surface finish is included with every material

Bearing:

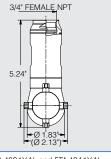
Ball bearing

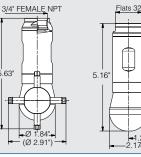
Required prefiltration:

Line filter with 0.2 mm/ 80 mesh

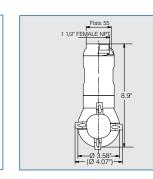
Installation:

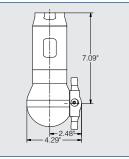
Operation in every direction is possible


Rotation monitoring sensor:


This series is qualified for rotation monitoring with the Lechler sensor. Please see page 42 for more information.

40


4.17 h 217


5TA.403.1Y.AL and 5TA.404.1Y.AL

5TA.405.1Y.AL

5.63"

Spray Angle	Ordering no.		Number,		(Gallo	Max. tank	Max.			
Aligie		Free Passage	Ø of nozzles (mm)	liters per minute		1	1	I	Ø	pressure
		(in.)		2 bar	30 psi	40 psi	75 psi	145 psi	(ft.)	(psi)
360°	5TA. 403. 1Y. BL	.059	4 x 3.0 mm	24	6	7	10	14	39	217
	5TA. 404. 1Y. BL	.059	4 x 4.0 mm	35	9	11	15	21	41	217
	5TA. 405. 1Y. BL	.059	4 x 5.0 mm	50	13	16	21	30	43	217

Spray Angle	Ordering no.	Free Passage	Number, Ø of nozzles (mm)	liters per minute	(Gallo	Max. tank Ø	Max. pressure			
~		(in.)		2 bar	30 psi	40 psi	75 psi	145 psi	(ft.)	(psi)
360°	5TB. 406. 1Y. BS	.236	4 x 6.0 mm	107	29	33	45	63	46	362
	5TB. 407. 1Y. BS	.236	4 x 7.0 mm	132	35	41	56	78	46	362
	5TB. 408. 1Y. BS	.236	4 x 8.0 mm	150	40	47	64	89	46	362

The new Lechler rotating jet cleaner enables containers and systems to be cleaned very efficiently. Thanks to the powerful solid jets, it also performs even the most difficult cleaning tasks.

Its high-quality and hygienic design makes it especially well suited for use in the chemicals and pharmaceuticals industry.

प्रसाधः

Gyro – heavy duty, high capacity Series 577

Series 577

With our largest capacity free spinning designs, the Gyro family is the high flow work horse of our tank cleaning nozzle line.

Product features:

- Highest flow rates of all our tank cleaning nozzles
- High cleaning performance at low pressures
- PTFE bearings easily replaced to extend the service life
- Free spinning, selflubricating, and self-flushing FDA Compliant
- (see page 24)

Applications:

- Medium to large tanks
- Ethanol fermenters
- Paper machine headboxes
- · Chemical storage

• Breweries

Max. tank diameter:

Inlet Size	Tank Diameter
1"	11'
2"	18'

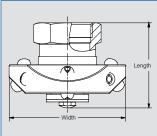
Operating pressure: 40 psi

Max. fluid temperature*: 194°F

Weight:

1" 1.65 lb. 2" 4 lb.

Material: 316 stainless steel PTFE


Bearing: Sleeve bearing

Filtration:

Line strainer with 20 mesh size

Female NPT Threaded

Spray Angle	(Ordering no.			Flow (Gallons P			Length (in.)	Width (in.)
•	Туре	Conn	ection		liters per minute			(111.)	(11.)
4		1" Female NPT	2" Female NPT	20 psi	2 bar	40 psi 60 psi			
180° down	577. 284. 1Y	BN	-	35	161	50	61	2.7	4.6
	577. 364. 1Y	BN	-	56	258	80	98	2.7	4.6
	577. 494. 1Y	-	BW	120	538	170	208	4.0	5.9
270° up	577. 285. 1Y	BN	-	35	161	50	61	2.7	4.6
	577. 405. 1Y	-	BW	70	322	100	123	4.0	5.9
360°	577. 289. 1Y	BN	-	35	161	50	61	2.7	4.6
	577. 369. 1Y	BN	-	57	258	80	98	2.7	4.6
	577. 409. 1Y	-	BW	70	322	100	123	4.0	5.9
	577. 439. 1Y	-	BW	85	387	120	147	4.0	5.9
	577. 499. 1Y	-	BW	120	548	170	208	4.0	5.9

The PTFE bearings and other wear parts can be replaced easily to extend the life of the unit. A rebuild kit contains: Bearing sleeves, bolt, nut, spacer, and complete instructions.

Size Product code 057.701.55.01 057.702.55.01

1"

2"

Contents of Gyro rebuild kit

Please note: We do not recommend operation of these products with compressed air, steam, or gases. For further information, please contact Lechler.

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	577. 284. 1Y	+	BN	=	577. 284. 1Y. BN

* Contact Lechler for maximum ambient temperature.

High impact tank cleaning machine for the largest tanks and the toughest cleaning jobs Series 5TM

Series 5TM

For the largest tanks and most difficult applications, this geardriven tank washing machine is our most powerful.

Product features:

- Very high cleaning performance at low pressures
- Requires no lubricants
- Systematically sweeps the entire tank interior (360°)
 Regular maintenance by
- replacement of wetted parts ensures long product life
- Can be mounted in any orientation

Applications:

- Large tanks
- Tough cleaning tasks, e.g., wine and beer fermenters, tank trucks, rail cars, chemical processing

Max. tank diameter: Cleaning: 50 ft.

Operating pressure:

75 psi

Max. fluid temperature*: 5TM: 203°F/95°C

Weight: Approx. 16.5 lb.

Material:

316L stainless steel PTFE and carbon fiber

Bearing: Ball and slide bearings

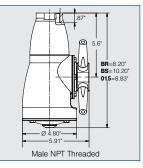
Dali and side bearings

Filtration: Line strainer with 80 mesh size

Opening requirement:

(Round hole diameter) 2 nozzle 5.9 inches 4 nozzle 7.8 inches

Rotation monitoring sensor:


This series is qualified for rotation monitoring with the Lechler sensor. Please see page 42 for more information.

* Contact Lechler for maximum ambient temperature.

42

0	rdering r	10.			No. of			Operatin	g Pressure		
Туре	C	Connectio	n	age	Nozzles						
	11/2" Male NPT	1 ¹ /2" Female NPT	11/2" CL.150 Flange	Eree Passage (iui)	Diameter		40 psi	60 psi	80 psi	100 psi	
5TM. 208. 1Y	BR	BS	015	.314	2x8mm	Flow Rate	40 gpm	49 gpm	56 gpm	59 gpm	
5TM. 209. 1Y	BR	BS	015	.354	2x9mm	Flow Rate	45 gpm	54 gpm	60 gpm	65 gpm	
5TM. 210. 1Y	BR	BS	015	.394	2x10mm	Flow Rate	50 gpm	62 gpm	69 gpm	72 gpm	
5TM. 211. 1Y	BR	BS	015	.433	2x11mm	Flow Rate	57 gpm	68 gpm	78 gpm	80 gpm	
5TM. 407. 1Y	BR	BS	015	.276	4x7mm	Flow Rate	53 gpm	70 gpm	78 gpm	82 gpm	
5TM. 408. 1Y	BR	BS	015	.315	4x8mm	Flow Rate	62 gpm	74 gpm	84 gpm	92 gpm	
5TM. 410. 1Y	BR	BS	015	.394	4x10mm	Flow Rate	80 gpm	95 gpm	107 gpm	110 gpm	

Bold type under operating pressure column indicates flows in excess of 80 gpm, which exceeds the normal maximum flow through the machine. Operating beyond this point can cause excessive speed and premature wear to the internal gear train. If you require this high a flow rate, contact us to discuss modifications to your unit. The operating **Cycle Time** is typically the minimum required for a full cleaning of a tank 30' in diameter or smaller. Larger tanks or difficult cleaning situations may require longer cycle times.

A special mounting attachment allows the 5TM version to double the spray volume to the end bulkheads of long, horizontal tanks or tankers. That part number is **099.164.17.00**.

If you have multiple large tanks to clean, Lechler offers a portable cart for easier transporting and operation of your 5TM from tank to tank. The cart part number is **M20.000.17.BR**. For use with "BR" connection only.

Example	Туре	+	Conn.	=	Ordering no.
for ordering:	5TM. 208. 17	+	BR	=	5TM. 208. 17. BR

Please note: We do not recommend operation of these products with compressed air, steam, or gases. To protect the products' inner workings, we suggest use of a line strainer with a 80 mesh size. For further information, please contact Lechler.

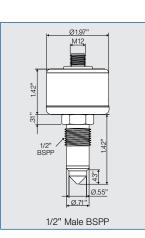
The previous M20/M29 series has been replaced with the 5TM series. 5TM components are compatible with all existing M20/M29 tank cleaning machines.

ł

Rotation Monitoring Sensor

The new Rotation Monitoring Sensor is a reliable way to confirm that your rotating tank cleaning nozzle is actually moving inside the tank. This is especially important for enclosed tanks where the operator has no access to view the interior of the tank.

The sensor is mounted from outside the tank with a weld-in sleeve that allows the probe tip to fit directly inside the tank so that cascading liquid can come in direct contact with the probe tip. Special software monitors the flow of cascading liquid intervals to determine if the nozzle is rotating. It will show a green light when proper rotation is detected and a red light when it is not.



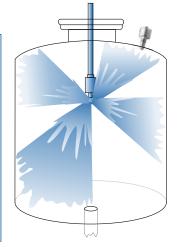
Product features:

- Reliable detection for rotating spray devices
- Free software, easy to configure for installation
- PC is no longer required after configuration
- Can be integrated into a PLC via M12 connector
- FDA Compliant (see page 24)

Applications:

Tank and vessel cleaning

Material:


Socket: 316L stainless steel Body: 303 stainless steel Probe Tip: PEEK

Electrical: 18 up to 32 VDC Power: <20 mA

Output signal: PNP, 50 mA short circuit protected

Process internal temperature: 32° up to +212°F

Ambient internal temperature: -14°F up to 140°F

Ordering Numbers:

050.040.00.00.0 Rotation Monitoring Sensor with Weld-In Sleeve

050.040.00.00.01.0 Cable Set for first-time operation

Lances

A common way to insert a tank cleaning nozzle into a tank for cleaning is by way of a lance. As with any inlet connection for a tank cleaning product, nozzles may be connected to a lance in these ways:

- Threaded
- Tri-Clamp
- Slip-on
- (secured with an R-clip) ■ Welded
- Flanged

There are two types of lances that can be used for tank cleaning:

Standard (or fixed length)Retractable

Either can simply be bolted to the tank wall while the lance end is inserted into the tank. The standard lance (see Figures 1-3) has a fixed length so care must be taken to ensure the lance is of the proper length for the size of the tank. On the retractable lance (see Figure 4), the shaft actually retracts, returning the nozzle back into the flange portion of the assembly so it only comes out when cleaning is performed.

Whatever your tank cleaning lance needs, even for something special like **Figure 3**, Lechler can fabricate one specifically for your application, be it for food, pharmaceutical, chemical processing or any other industry.

Figure 1

Figure 3

43

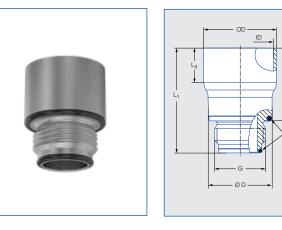
Figure 4

Figure 2

Adapter »HygienicFit« Series 05C

The HygienicFit ensures a hygienic connection between your tank cleaning nozzle and the supply line. The adaptor is welded onto the connection pipe, while the Lechler tank cleaning nozzle is screwed onto it. The O-rings on the adapter completely encapsulate the thread, thereby providing a perfectly hygienic connection to the system. Through the use of the Orings, the HygienicFit also

offers a reliable thread lock.


Materials:

316L SS; EPDM (O-Ring)

Max temperature: 302°F

Installation:

Operation in every direction is possible

Ordering no.	Connection thread BSPP male		Dimer [ir			Dimer OD = dian ID = dian [ii	Outer neter Inner neter	Pipe standard
		L ₁	L ₂	L ₃	ØD	OD	ID	
05C.190.1Y.AE.16	3/8	1.89	1.41	.71	.85	.75	.62	DIN EN 10357 series D
05C.230.1Y.AE.15	3/8	1.89	1.41	.71	.85	.91	.79	DIN EN 10357 series A
05C.250.1Y.AE.12	3/8	1.89	1.41	.67	.85	.98	22,6	DIN EN 10357 series D
05C.250.1Y.AG.12	1/2	2.20	1.54	.71	1.22	.98	.89	DIN EN 10357 series D
05C.350.1Y.AK.15	3/4	2.17	1.49	.83	1.32	1.38	1.26	DIN EN 10357 series A
05C.380.1Y.AK.12	3/4	2.17	1.49	.71	1.32	1.50	1.40	ISO 2037
05C.381.1Y.AK.15	3/4	2.17	1.49	.71	1.32	1.50	1.39	DIN EN 10357 series D
05C.381.1Y.AM.16	1	2.32	1.54	.91	1.59	1.50	1.37	DIN EN 10357 series D
05C.508.1Y.AP.15	1 1/4	2.24	1.50	.87	1.94	2.00	1.88	DIN EN 10357 series D
05C.635.1Y.AR.16	1 1/2	2.48	1.73	.87	2.20	2.50	2.37	DIN EN 10357 series D

Material: EPDM

Spare parts set of O-rings, EPDM

Thread type BSPP	Ordering no.
3/8	05C.000.E9.AE.00
1/2	05C.000.E9.AG.00
3/4	05C.000.E9.AK.00
1	05C.000.E9.AM.00
1 1/4	05C.000.E9.AP.00
1 1/2	05C.000.E9.AR.00

O-ring set is also available on request in FKM.

www.LechlerUSA.com

ECHIER

Pneumatic atomizing nozzles

Atomization of viscous liquids	
Cooling	
Gas cooling	
Humidification of air	
Humidification of goods	
Lubrication	
Web dampening	
and many others	

Pneumatic atomizing nozzles are available in various designs to generate specific spray and flow requirements:

- Pressure principle (supply from a pressurized source)
- Gravity principle (supply located above the nozzle)
- Siphon principle (self-aspirating)
- Internal or external mixFull cone or flat fan spray
- pattern
 Optional pneumatic valve (with Series 136) or standard pneumatic valve (on Series 176)

The Series 136 atomizing nozzles have a number of optional nozzle control attachments which can be used to adjust the liquid flow; affect droplet size; flush the nozzle (to prevent clogging); or control on-off operation of the flow. These accessories are listed on page 53.

Criteria for selecting pneumatic atomizing nozzles

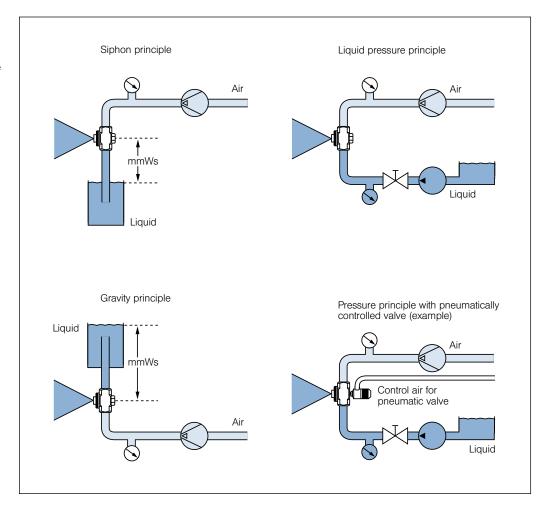
1. Spray pattern

Pneumatic flat fan atomizing nozzles are appropriate for humidifying and cooling of product, for web dampening, or for whenever a broad linear coverage is required (such as applying paint or food toppings). Pneumatic full cone atomizing nozzles are appropriate when circular impact or coverage is required (such as for fluid injection into a duct or pipe).

2. Liquid supply source

Whenever liquid can be supplied under pressure, it is most appropriate to use nozzles which function by the liquid pressure principle. Use of pneumatic atomizing nozzles operating by the siphon or gravity principle is more appropriate when liquid is to be sprayed in very low quantities (such as spraying disinfectants) and little pressure is required.

3. Internal vs. external mix


In pneumatic nozzles, the supply of air or gas mixes with the liquid flow, breaking up the fluid into the smallest droplet particles, either inside (internal mix) or outside (external mix) the nozzle chamber. An internal mix nozzle is appropriate when water, low viscosity liquids, or liquids without solid matter are to be atomized. An external mix nozzle is more appropriate for atomizing viscous liquids which might otherwise tend to clog the nozzle. Low liquid pressures should be used with this type of nozzle due to its design.

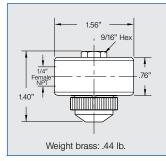
4. Style of nozzle

Series 136 nozzles (AirMists) are most appropriate when there is a need to finely atomize low viscous fluids, such as water. These are also able to have any of the various attachments on page 53 applied to them. This includes the pneumatic valve, which can separately and remotely control on-off operations, especially when intermittent spraying is required. Series 176 nozzles (ViscoMists) are external mix nozzles only and are most appropriate for spraying more viscous fluids (such as syrups and heavy oils) than AirMists are designed for.

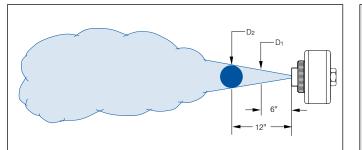
Series 166 AirMists include a solenoid for electronic activation of the nozzle through operation of a needle valve. This could be more appropriate if metered air is limited.

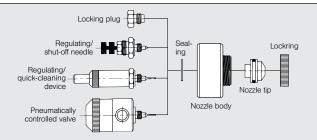
Lechler also offers additional atomizing nozzles which are not featured in this catalog. Please refer to page 59 for more information on the 150, 166, 170, 171 and 180 (Supersonic) series of Pneumatic atomizing nozzles.

AirMist pneumatic atomizing nozzles Full cone, pressurized liquid supply, internal mix Series 136.1


Fine full cone atomization and fogging with air or gas. Liquid pressure principle. Internal mixing of fluids.

Applications:


- Humidification of air
- Cooling



Series 136.1

Additional flow rate data available upon request. The body is also available in a rectangular design.

For accessories for series 136, please refer to page 53.

¢	Ordering r Type	io. Mat	no	age		Liquid Flow GPH (Gallons Per Hour) at Indicated Liquid Pressure Air Flow SCFM (Standard Cubic Feet Per Minute)												Spray Dimensions					
angle	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			num Passi		10 psi			20 psi			40 psi			60 psi								
Spray a		316L SS 1	ss ₈₀₈ 16	ij Maximum Tree Passage	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	Liq. psi	D1 (in.)	D2 (in.)			
20°	136. 115. xx. B2	0	0	.020	6 12 17	1.6 1.0 .45	.18 .35 .53	20 26 32 38	1.5 1.1 .58 .32	.47 .59 .82 1.0	35 41 46 52 64 75	2.4 2.0 1.6 1.2 .53 .11	.65 .71 .88 1.1 1.5 1.8	44 49 55 61 73 84	2.9 2.5 2.2 1.8 1.1 .55	.71 .82 .94 1.1 1.5 1.8	12 26 38 46 64	10 20 30 40 60	2 2 2 2 2	4 4 4 4 4			
	136. 125. xx. B2	0	0	.020	12 17 23 29 35 41	1.2 1.2 1.1 .92 .79 .71	.88 1.1 1.4 1.5 1.8 1.9	17 23 29 35 41 46	1.8 1.7 1.6 1.5 1.4 1.3	1.1 1.3 1.5 1.8 2.0 2.2	41 46 52 58 64 70	2.4 2.3 2.2 2.1 2.0 1.9	1.9 2.2 2.4 2.6 2.8 3.1	49 55 61 73 78 84	2.8 2.7 2.6 2.5 2.4 2.3	2.3 2.5 2.7 3.2 3.4 3.6	20 32 41 49 61	10 20 30 40 60	2 2 2 2 2	4 4 4 4 4			
	136. 134. xx. B2	0	0	.028	17 23 29 35 41 46	3.5 3.3 3.1 3.0 2.9 2.9	1.6 1.9 2.3 2.6 2.9 3.2	29 35 41 46 52 58	5.1 4.8 4.6 4.4 4.3 4.1	2.3 2.6 2.9 3.2 3.5 3.8	44 49 55 61 67 73	7.5 7.3 7.1 6.8 6.6 6.4	3.1 3.4 3.7 4.0 4.3 4.6	55 61 67 73 78 84	8.6 8.5 8.3 8.1 7.9 7.7	3.6 4.0 4.3 4.6 4.9 5.2	26 41 55 75 87	10 20 30 40 60	2 2 3 3	4 4 4 4 4			
	136. 142. xx. B2	0	0	.098	20 26 32 38 44 49	6.4 5.4 5.3 5.1 4.6 4.4	3.0 3.7 4.2 4.8 5.5 6.1	23 29 35 41 46 52	14 11 9.3 8.0 7.6 7.4	2.8 3.5 4.2 4.9 5.6 6.2	46 52 58 64 70 75	19 17 15 13 12 11	4.7 5.4 6.2 6.9 7.6 8.3	55 61 67 73 78 84	25 22 20 18 17 15	5.4 5.9 6.7 7.4 8.1 8.8	12 23 44 58 87	10 20 30 40 60	2 3 2 3 3	4 4 4 4 4			

 Example
 Type
 +
 Material no. (xx) =
 Ordering no.

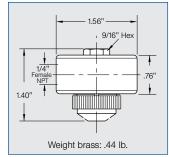
 for ordering:
 136. 115. xx. B2
 +
 1Y
 =
 136. 115. 1Y. B2

For accessories and spare parts, see page 53 of this section.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

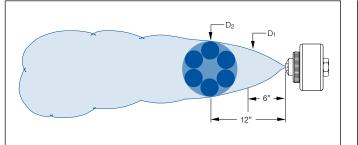
AirMist pneumatic atomizing nozzles Wide full cone, pressurized liquid supply, internal mix Series 136.2

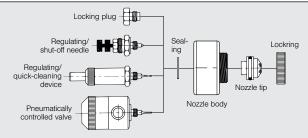
Fine full cone atomization and fogging with air or gas. Especially wide spray angle at 60°.


Applications:

- Humidification of air
- Cooling

Pneumatic


atomizing



Additional flow rate data available upon request. The body is also available in a rectangular design.

Pneumatic atomizing

For accessories for series 136, please refer to page 53.

¢	Ordering r Type	no. Mat.	20	ige		Liquid Flow GPH (Gallons Per Hour) at Indicated Liquid Pressure Air Flow SCFM (Standard Cubic Feet Per Minute)												Spray Dimensions					
angle	туре		110.	num Passe		10 psi	i		20 psi			40 psi			60 psi					_			
Spray a		31915 SS 1915 1Y	ss _{E0E}	j. Maximum Free Passage	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	Liq. psi	D1 (in.)	D2 (in.)			
60°	136. 215. xx. B2	0	0	.020	15 17 20	.79 .48 .18	.77 .88 1.1	23 26 29 32 35 38	1.5 1.3 1.0 .74 .45 .21	1.0 1.1 1.2 1.4 1.5 1.6	41 46 52 58 64 70 73	2.2 1.9 1.5 1.1 .58 .21 .11	1.4 1.6 1.9 2.1 2.4 2.6 2.7	55 61 67 73 78 84 87	2.5 2.2 1.8 1.4 1.0 .61 .37	1.8 2.1 2.3 2.5 2.8 3.1 3.3	15 23 35 46 61	10 20 30 40 60	8 9 10 10	12 15 15 15 16			
	136. 222. xx. B2	0	0	.039	12 15	4.6 1.6	1.6 2.5	23 26 29 32	6.8 3.9 1.8 .50	2.4 3.1 3.9 4.8	44 46 49 52 55 58	11 8.3 5.9 3.9 2.2 1.2	3.4 4.1 4.8 5.6 6.5 7.2	55 58 61 64 67 70 73	15 12 9.9 7.8 5.7 4.0 2.6	3.8 4.3 5.0 5.7 6.6 7.3 8.1	12 23 33 46 61	10 20 30 40 60	10 10 10 10 10	18 18 18 18 18			
	136. 231. xx. B2	0	0	.055	23 29 35 41	6.8 4.7 3.0 1.8	3.0 3.6 4.2 4.8	38 44 49 55 61 67	12 8.7 6.5 4.8 3.5 2.5	4.1 4.8 5.4 6.0 6.6 7.1	52 58 64 70 75 81	25 21 17 15 12 10	4.6 5.5 6.2 7.0 7.7 8.3	61 67 73 78 84 87	35 31 27 23 20 19	4.3 5.3 6.1 6.9 7.8 8.1	29 38 35 52 61	10 20 30 40 60	9 10 10 10 10	15 16 17 17 17			

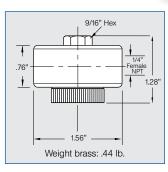
Example	Туре	+	Material no. (xx) =	-	Ordering no.
for ordering:	136. 215. xx. B2	+	1Y =	=	136. 215. 1Y. B2

For accessories and spare parts, see page 53 of this section.

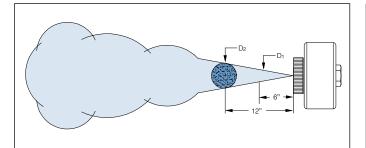
For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

AirMist pneumatic atomizing nozzles Full cone, gravity/siphon liquid supply, external mix **Series 136.3**

Particularly fine full cone atomization with air or gas. Siphon principle. External mixing of fluids.


Applications:

- Chemical industry
- Cooling


Pneumatic atomizing

Atomization of viscous liquids

Additional flow rate data available upon request. The body is also available in a rectangular design.

For accessories for series 136, please refer to page 53.

₹,	Ordering n Type	io. Mat	no.	ר sage				Flow F			nensions							
Spray angle $ ot\!$		316L SS 1 3	ss eoe 16	.) Maximum 	Air Pressure psi	Air Capacity SCFM	Gr 6"	ravity Hea 12"	ad 18"	4"	Si 8"	phon Hei 12"	ght 24"	36"	Air psi	Siphon Height (in.)	D1 (in.)	D2 (in.)
20°	136. 316. xx. B2	0	0	.016	9 20 29 46 70 87	.50 .75 1.0 1.4 2.0 2.4	.40 .44 .52 .59 .52	.36 .44 .49 .55 .62 .55	.35 .43 .47 .52 .60 .52	.30 .35 .44 .51 .41	.25 .31 .40 .49 .40	.17 .25 .36 .47 .33	.25 .40	.13 .30	20 46 70 87	12 12 12 12	2 2 3 3	4 5 5 5
	136. 324. xx. B2	0	0	.028	17 26 35 46 70 87	.70 1.0 1.1 1.4 2.0 2.4	1.5 1.7 1.4	1.7 1.5	1.8 1.6	.82 .99 1.1 1.3 1.6 1.3	.67 .85 .99 1.1 1.4 1.2	.49 .71 .85 1.0 1.4 1.1	.37 .59 1.0 .51	.51	17 46 70 87	12 12 12 12	2 3 3 3	5 5 5 5
	136. 334. xx. B2	0	0	.028	12 26 35 46 70 87	.90 1.1 1.5 2.2 3.0 3.7	1.4 1.5 1.7 2.2 2.1	1.7 1.8 2.3 2.2	1.8 1.9 2.4 2.2	.70 1.1 1.3 1.5 1.9 1.9	.60 1.0 1.2 1.4 1.8 1.9	.38 .93 1.1 1.3 1.8 1.8	.00 .57 .87 1.1 1.5 1.6	.38 .67 1.3 1.5	12 46 70 87	12 12 12 12	3 3 3 3	5 5 5 5
	136. 342. xx. B2	0	0	.059	26 35 44 55 61 87	2.6 3.3 4.0 4.6 5.0 7.0	3.2 3.2 3.3 3.5 3.2	3.5 3.5 3.7 3.4	3.7 3.7 3.8	2.5 2.7 2.8 3.0 3.2 2.9	2.2 2.5 2.7 2.9 3.1 2.8	2.0 2.3 2.5 2.8 3.0 2.7	1.4 1.8 2.0 2.5 2.8 2.3	.90 1.4 1.7 2.2 2.6 1.9	26 44 61 87	12 12 12 12	3 3 3 3	5 5 5 5
	136. 351. xx. B2	0	0	.098	52 55 61 70 78 87	7.0 8.0 9.0 10.0 11.0 12.0	16 16	17 17 17	18 17	12 13 14 15 15 15	11 12 13 14 15 14	11 12 14 14 14	8.8 9.3 10 12 13 12	7.9 9.2 1.0 9.8	55 67 78 87	12 12 12 12	4 4 4 4	5 6 6 6

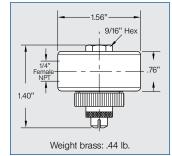
Example for ordering:

Туре

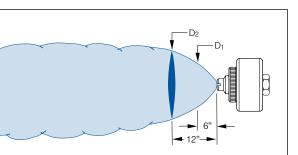
50

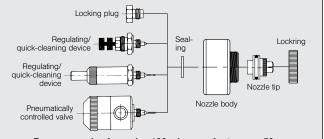
+ Material code (xx) = Ordering no. 136. 324 xx. B2 + 1Y = 136. 324. 1Y. B2 For accessories and spare parts, see page 53 of this section. For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

AirMist pneumatic atomizing nozzles Wide flat fan, pressurized liquid supply, internal mix Series 136.4



Particularly fine flat fan atomization with air or gas. Liquid pressure principle. Internal mixing of fluids.


Applications:


- Web dampening
- Cooling
- Humidification of goods

Additional flow rate data available upon request. The body is also available in a rectangular design.

For accessories for series 136, please refer to page 53.

\$	Ordering n Type	no. Mat.	. no.	age			Liquid			ons Per H (Standar			Liquid Pre Minute)	ssure			Sp	oray Din	nensior	IS
angle				mum Pass		10 ps	i		20 psi	_		40 psi			60 psi					
Spray a		316L SS 1	SS E0E 16	(ui) Maximum (ui) Free Passage	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	Liq. psi	D1 (in.)	D2 (in.)
45°	136. 414. xx. B2	0	0	.028	15 17 20 23 26	2.0 1.6 1.1 .71 .34	.77 .88 1.0 1.1 1.2	20 23 26 29 32 35 38 41 46	3.8 3.4 3.1 2.7 2.4 2.0 1.6 1.2 .55	.88 .94 1.1 1.2 1.3 1.4 1.5 1.6 1.9	32 38 44 49 55 61 67 73 84	5.9 5.3 4.7 4.1 3.5 2.9 2.3 1.7 .66	1.2 1.4 1.5 1.8 2.0 2.2 2.4 2.6 3.1	44 49 55 61 67 73 78 84	6.6 6.1 5.5 5.0 4.5 3.9 3.4 2.9	1.5 1.6 1.8 2.1 2.2 2.5 2.7 2.9	20 35 46 55	10 20 30 40	3 4 4 5	5 6 7
	136. 443. xx. B2	0	0	.039	17 20 23 26	3.7 3.1 2.5 2.1	.88 1.0 1.1 1.2	23 26 29 32 35 38 41 46 52	7.0 6.4 5.8 5.3 4.8 4.3 3.8 3.0 2.3	.94 1.1 1.2 1.3 1.4 1.5 1.6 1.9 2.1	44 49 55 61 67 73 78 87	9.8 8.7 7.8 6.9 6.1 5.3 4.6 3.7	1.5 1.8 2.0 2.2 2.5 2.7 2.9 3.2	52 58 64 70 75 81 87	12 11 10 9.2 8.4 7.7 6.9	1.7 1.9 2.2 2.4 2.6 2.9 3.1	17 29 41 55	10 20 30 40	4 5 6	6 7 7 8
	136. 462. xx. B2	0	0	.059	17 23 29 35 41 46 52 58 64	5.0 3.2 2.5 1.9 1.5 1.3 .95 .85 .58	1.5 2.0 2.4 2.8 3.2 3.5 3.9 4.2 4.6	29 35 41 46 52 58 64 70 75 84	5.8 4.8 3.8 3.0 2.3 2.1 1.6 1.2 .85 .21	1.2 1.4 1.6 1.9 2.1 2.3 2.5 2.7 2.9 3.2	44 49 55 61 67 73 78 84 87	16 14 12 10 8.8 7.8 6.7 5.8 5.4	2.4 2.8 3.4 3.9 4.4 4.8 5.2 5.7 5.8	55 58 61 64 67 70 73 75 78 84	20 19 17 16 15 14 14 13 12 12	2.7 3.0 3.2 3.5 3.8 3.9 4.2 4.5 4.8 5.1	17 35 46 55	10 20 30 40	5 5 6	6 7 7 8

Example	Туре	+	Material no. (xx) =	Ordering no.
for ordering:	136. 414. xx. B2	+	1Y =	136. 414. 1Y. B2

Continued on next page.

For accessories and spare parts, see page 53 of this section.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

AirMist pneumatic atomizing nozzles Wide flat fan, pressurized liquid supply, internal mix Series 136.4

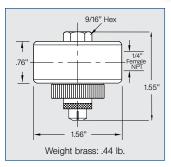
¢	Ordering r Type	io. Mat	no	age			Sp	oray Dir	nensior	าร										
angle	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SS		Maximum Free Passage		10 ps	i	_												
Spray angle		s 1915 1Y	ss ₈₀₈	(ini)	Air psi GPH SCFM Air psi GPH SCFM Air 10 17 71 00 05 10 05 15 05 15												Air psi	Liq. psi	D1 (in.)	D2 (in.)
60°	136. 425. xx. B2	0	0	.020	12 17 23 29 35 41 44	1.7 1.5 1.2 1.1 .85 .69 .58	.71 .94 1.1 1.4 1.5 1.7 1.8	20 26 32 38 44 49 55 58 64 70 75 81 87	2.5 2.3 2.1 1.9 1.7 1.5 1.3 1.3 1.1 .95 .74 .58 .42	1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.5 2.6 2.8 3.0 3.2	35 38 44 49 55 61 67 73 78 84 84	3.5 3.4 3.2 3.1 2.9 2.7 2.6 2.4 2.3 2.1 2.1	1.5 1.6 1.8 2.0 2.2 2.4 2.5 2.7 2.9 3.1 3.2	35 41 46 52 58 64 70 75 81 87	4.3 4.1 4.0 3.8 3.7 3.5 3.4 3.2 3.1 3.0	1.5 1.7 1.9 2.1 2.2 2.4 2.6 2.8 3.0 3.2	17 32 44 49	10 20 30 40	6 6 7 8	8 10 10 13
	136. 452. xx. B2	0	0	.059	15 20 26 32 38 41	5.0 2.3 2.0 1.1 .26 .03	2.3 3.4 4.1 4.9 5.8 6.1	26 29 32 35 38 41	8.2 6.7 5.3 4.1 3.3 2.7	3.1 3.7 4.2 4.7 5.2 5.7	46 52 58 64 70 75 81 87	13 10 8.3 6.3 4.7 3.5 2.8 2.3	4.5 5.5 6.6 7.6 8.5 9.4 10 11	55 61 67 73 78 84 87	19 15 13 11 8.9 7.3 6.4	4.8 5.7 6.6 7.7 8.7 9.7 10	15 26 38 52	10 20 30 40	5 6 7	7 9 10 11
80°	136. 433. xx. B2	0	0	.016	15 17 20 23 38	3.1 2.1 1.4 .98 2.0	1.2 1.4 1.6 1.9 2.5	26 29 32 35 67 41 44	4.8 4.0 3.2 2.6 3.3 1.6 1.2	1.6 1.9 2.1 2.4 3.9 2.8 2.9	44 49 55 61 78 73 73 78	8.2 6.7 5.4 4.3 5.1 2.5 1.7	2.2 2.6 3.0 3.5 4.2 4.3 4.7	55 61 67 73 84 87	9.9 8.6 7.3 6.2 4.2 3.8	2.6 2.9 3.4 3.8 4.6 4.9	20 32 44 55	10 20 30 60	6 7 8 12	8 10 12 19

Example	Туре	+	Material no. (xx) =	Ordering no.
for ordering:	136. 425. xx. B2	+	1Y =	136. 425. 1Y. B2

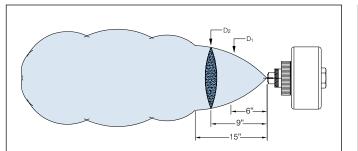
For accessories and spare parts, see page 53 of this section.

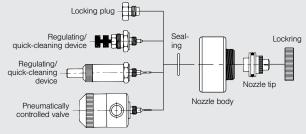
For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

AirMist pneumatic atomizing nozzles Wide flat fan, gravity/siphon liquid supply, internal mix Series 136.5


Particularly fine flat fan atomization with air or gas. Siphon principle. Internal mixing of fluids.

Applications:


- Web dampening
- Cooling


Pneumatic atomizing Humidification of goods

Additional flow rate data available upon request. The body is also available in a rectangular design.

For accessories for series 136, please refer to page 53.

\$	Ordering r	10.						Flow F	ate (Gallo	ons Per H	our)					Spray Dirr	nensions	
o ∕	Туре	Mat	. no.	sage							,							
Spray angle		SS 1916 1Y	SS E0E	ii) Maximum ('ui) Free Passage	Air Pressure psi	Air Capacity SCFM	Gr 6"	avity Hea 12"	d 18"	4"	Si 8"	phon Hei 12"	ght 24"	36"	Air psi	Siphon Height (in.)	D1 (in.)	D2 (in.)
60°	136. 516. xx. B2	0	0	.016	20 26 29 38 46 55 61 64 70 78 81 87	1.4 1.7 1.8 2.2 2.6 3.0 3.2 3.3 3.6 4.0 4.1 4.3	.52 .52 .52 .48 .45 .51 .52 .52 .53 .61 .61 .59	.57 .59 .58 .59 .51 .48 .54 .54 .54 .54 .62 .60 .59	.59 .62 .51 .57 .55 .58 .58 .58 .57 .60 .59 .59	.49 .50 .50 .46 .44 .49 .51 .50 .53 .59 .58 .55	.48 .49 .48 .45 .43 .49 .48 .49 .53 .59 .57 .55	.44 .47 .44 .42 .42 .48 .48 .48 .54 .57 .55 .54	.39 .40 .38 .42 .45 .44 .46 .54 .54 .54 .53 .51	.32 .33 .31 .36 .39 .45 .47 .52 .49 .48 .47	15 44 67 87	12 12 12 12	5 6 7 7	6 8 9 9
	136. 525. xx. B2	0	0	.020	20 26 29 38 46 55 61 64 70 78 81 87	1.5 1.8 1.9 2.3 2.7 3.1 3.4 3.5 3.8 4.2 4.3 4.6	.75 .78 .75 .65 .62 .62 .61 .59 .67 .66 .68	.77 .80 .80 .76 .66 .63 .62 .61 .59 .59 .65 .69	.81 .83 .80 .72 .67 .64 .64 .64 .62 .68 .73	.70 .73 .72 .66 .55 .59 .58 .58 .58 .56 .69 .68 .63	.66 .70 .71 .65 .52 .59 .56 .55 .54 .67 .63	.64 .68 .61 .50 .57 .56 .54 .55 .66 .63 .58	.56 .58 .51 .46 .52 .51 .52 .50 .60 .57 .51	.48 .50 .48 .43 .50 .49 .48 .48 .56 .55 .53 .48	15 44 67 87	12 12 12 12	6 8 10	9 12 12 16

 Example
 Type
 +
 Material code (xx) = Ordering no.

 for ordering:
 136.525.xx. B2
 +
 1Y
 =
 136.525.1Y. B2

For accessories and spare parts, see page 53 of this section.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

Pneumatic atomizing

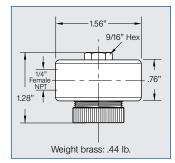
www.LechlerUSA.com

53 EECHLER

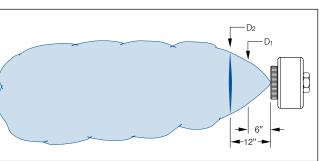
AirMist pneumatic atomizing nozzles Flat fan, pressurized liquid supply, external mix Series 136.6

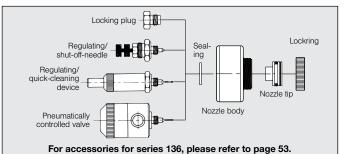
Fine flat fan atomization with air or gas. Liquid pressure principle. External mixing of fluids.

Applications:


- Web dampening
- Cooling

Pneumatic atomizing


- Humidification of goods
- Atomization of viscous liquids



Series 136.6

Additional flow rate data available upon request. The body is also available in a rectangular design.

¢	Ordering r	no. Mat.	20	ge	Liquid Flow GPH (Gallons Per Hour) at Indicated Liquid Pressure Air Flow SCFM (Standard Cubic Feet Per Minute)														nensior	IS
angle	Туре		110.	num Passe		1 psi			2 psi			4 psi	,		5 psi					
Spray a		316L SS 1	ss ₈₀₈	iji Maximum iji Free Passage	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	Liq. psi	D1 (in.)	D2 (in.)
45°	136. 616. xx. B2	0	0	.016	12 23 35 46 58 70	.44 .51 .55 .58 .59 .59	1.4 2.2 2.9 3.6 4.3 5.0	12 20 32 44 58 70	.64 .68 .73 .72 .73 .73 .73	1.4 2.1 2.8 3.5 4.3 5.0	12 23 35 46 58 70	.90 .93 .96 .96 .97 .97	1.5 2.2 2.9 3.6 4.3 5.0	15 26 38 49 61 72	.97 1.0 1.0 1.0 1.0 1.0	1.6 2.4 3.1 3.8 4.5 5.2	20 32 46 58 73	1 2 3 4 5	3 4 4 4 4	5 5 5 6 6
	136. 635. xx. B2	0	0	.020	12 23 35 47 58 70	.63 .75 .82 .85 .85 .85	1.4 2.2 2.9 3.6 4.3 5.0	12 23 35 47 58 70	.91 .97 1.0 1.0 1.0 1.0	1.4 2.2 2.9 3.6 4.3 5.0	12 23 35 46 58 70	1.3 1.3 1.4 1.4 1.4 1.4	1.4 2.2 2.9 3.6 4.3 5.0	15 26 38 49 61 73	1.4 1.4 1.5 1.5 1.5 1.5	1.6 2.4 3.1 3.8 4.4 5.1	20 32 46 58 73	1 2 3 4 5	3 4 4 4 4	5 5 6 6
	136. 654. xx. B2	0	0	.028	12 23 35 46 58 70	1.4 1.5 1.6 1.7 1.7 1.7	1.4 2.2 2.9 3.6 4.2 5.0	12 23 35 46 58 70	1.9 2.0 2.1 2.1 2.1 2.1 2.1	1.4 2.2 2.9 3.6 4.3 4.9	17 29 41 52 64 75	2.7 2.7 2.8 2.8 2.8 2.8 2.8	1.8 2.5 3.2 3.9 4.6 5.3	23 35 46 58 69 81	2.9 3.0 3.0 3.0 3.0 3.0 3.0	2.2 2.9 3.6 4.3 4.9 5.6	20 32 46 58 73	1 2 3 4 5	4 4 4 4	5 6 6 6 6

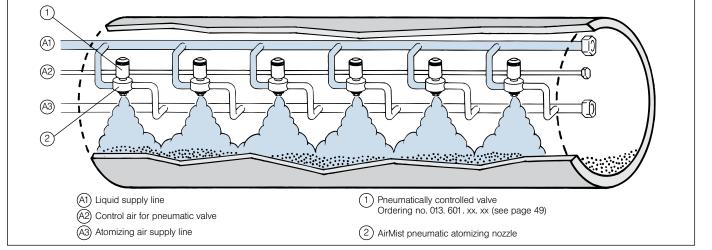
Example	Туре	+	Material no. (xx)	=	Ordering no.
for ordering:	136. 616. xx. B2	+	1Y	=	136. 616. 1Y. B2

Continued on next page.


For accessories and spare parts, see page 53 of this section.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

AirMist pneumatic atomizing nozzles Flat fan, pressurized liquid supply, external mix **Series 136.6**

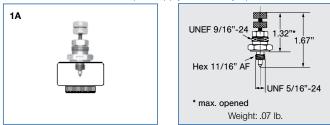

¢	Ordering n			ge			Liquid			ons Per Ho (Standaro			Liquid Pre Minute)	ssure			Sp	oray Dir	nensior	าร
ngle	Туре	Mat	. no.	num Passa		1 psi			2 psi	(4 psi			5 psi					
Spray angle		31915 SS 1915 1 Y	ss eoe 16	i) Maximum Free Passage	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	GPH	SCFM	Air psi	Liq. psi	D1 (in.)	D2 (in.)
60°	136. 626. xx. B2	0	0	.016	12 23 35 46 58 70	.48 .55 .59 .61 .63 .63	1.7 2.5 3.3 4.1 4.9 5.7	12 23 35 46 58 70	.66 .71 .75 .76 .78 .78	1.7 2.5 3.3 4.1 4.9 5.7	12 23 35 46 58 70	.92 .97 1.00 1.0 1.0	1.6 2.5 3.3 4.1 4.9 5.7	12 23 35 46 58 70	1.00 1.0 1.0 1.1 1.1 1.1	1.7 2.5 3.3 4.1 4.9 5.7	23 35 46 58 75	1 2 3 4 5	3 4 4 4 4	5 6 6 6
	136. 645. xx. B2	0	0	.020	12 23 35 46 58 70	.72 .82 .89 .91 .93 .94	1.7 2.5 3.3 4.1 4.9 5.7	12 23 35 46 58 70	.97 1.1 1.1 1.1 1.1 1.2	1.7 2.5 3.3 4.1 4.9 5.7	15 26 38 49 61 72	1.4 1.4 1.5 1.5 1.5	1.9 2.7 3.5 4.3 5.1 5.9	14 26 38 49 61 73	1.5 1.5 1.6 1.6 1.6	1.9 2.7 3.5 4.3 5.1 5.9	23 35 46 58 75	1 2 3 4 5	4 4 5 5 5	6 6 6 6 6
	136. 664. xx. B2	0	0	.028	12 23 35 46 58 70	1.4 1.6 1.8 1.8 1.9 1.9	1.6 2.5 3.3 4.1 4.9 5.7	15 26 38 49 61 73	2.0 2.1 2.2 2.3 2.3 2.3	1.9 2.7 3.5 4.3 5.1 5.9	15 26 38 49 61 72	2.8 2.9 3.0 3.0 3.0	1.9 2.7 3.5 4.3 5.1 5.9	14 26 38 49 61 73	3.0 3.1 3.1 3.2 3.2 3.2	1.9 2.7 3.5 4.3 5.1 5.9	23 35 46 58 75	1 2 3 4 5	4 5 6 6	6 6 7 7 8
	136. 673. xx. B2	0	0	.039	15 26 38 49 61 73	3.8 3.7 3.6 3.4 3.2 2.9	4.5 6.5 8.3 10 12 14	20 32 44 55 67 78	4.9 4.7 4.4 4.0 3.7 3.2	5.5 7.4 9.4 11 13 15	29 41 52 64 75 84	6.5 6.2 5.6 5.0 4.4 4.0	6.9 8.9 11 13 15 16	35 46 58 70 81	7.0 6.5 5.8 5.1 4.5	7.9 9.8 12 14 16	23 35 46 58 75	1 2 3 4 5	5 5 5 5 5	6 6 6 7
	136. 682. xx. B2	0	0	.059	15 26 38 49 61 73	5.9 5.0 4.5 4.2 4.2 4.2 4.0	4.4 6.5 8.3 10 12 14	20 32 44 55 67 78	7.6 6.3 5.6 5.1 4.9 4.6	5.5 7.4 9.3 11 13 15	26 38 49 61 73 84	11 8.8 7.5 6.7 6.1 5.6	6.5 8.4 10 12 14 16	29 41 52 64 75 87	12 9.3 8.0 7.1 6.4 5.9	6.9 8.9 11 13 15 16	23 35 46 58 75	1 2 3 4 5	4 5 5 5 5	6 6 6 7
	136. 691. xx. B2	0	0	.098	26 38 49 61 73 78	13 13 12 11 11 10	9.6 13 15 18 21 23	35 46 58 70 81 87	17 16 15 14 13 12	12 15 18 20 23 25	43 55 67 78 87	23 21 20 18 17	14 17 20 23 25	44 55 67 78 87	26 23 21 20 18	14 17 20 22 25	23 35 46 58 75	1 2 3 4 5	6 6 6 6	8 8 8 8 8

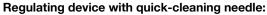
Example Туре for ordering: 136. 626. xx. B2 +

+ Material no. (xx) = Ordering no. 1Y

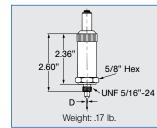
136. 626. 1Y. B2 =

For accessories and spare parts, see page 53 of this section. For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

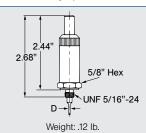



Cereal dampening in a mixing drum

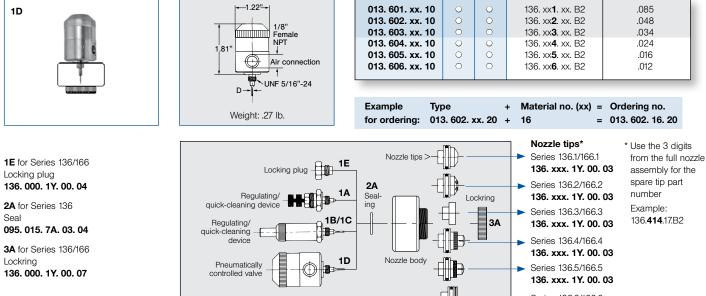
Regulating device and shut-off needle:


Shuts off flow and controls liquid supply - manually operated


Combines orifice cleaning with liquid flow control - manually operated



Quick-cleaning device:


Does orifice cleaning with push-button pin - manually operated

Pneumatically controlled valve:

Opening pressure 30 psi, max. 180 cycles/min. Connects to separate air inlet for fast on/off operation – externally controlled

Ordering no.

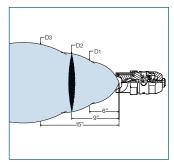
Ordering	no.		Use the 6th digit	
Assembly part no.	Mat SS E0E 16	. no. Nickel Plate	appropriate accessory Example: 136.41 4. 1Y.B2	Needle diameter D (in.)
013. 601. xx. 30 013. 602. xx. 30 013. 603. xx. 30 013. 604. xx. 30 013. 605. xx. 30 013. 606. xx. 30	000000		136. xx 1 . xx. B2 136. xx 2 . xx. B2 136. xx 3 . xx. B2 136. xx 4 . xx. B2 136. xx 5 . xx. B2 136. xx 6 . xx. B2	.085 .048 .034 .024 .016 .012

013. 601. xx. 20	0	0	136. xx 1 . xx. B2	.085
013. 602. xx. 20	0	0	136. xx 2 . xx. B2	.048
013. 603. xx. 20	0	0	136. xx 3 . xx. B2	.034
013. 604. xx. 20	0	0	136. xx 4 . xx. B2	.024
013. 605. xx. 20	0	0	136. xx 5 . xx. B2	.016
013. 606. xx. 20	0	0	136. xx 6 . xx. B2	.012

Pneumatic atomizing nozzles ViscoMist[™] flat fan, external mix Series 176

Versatile design with builtin pneumatic needle valve for liquid flow control and automatic clean-out. Three nozzle body configurations offer flexible tailoring to your specific application needs. Models feature individual controls for onoff operation, atomizing air, and fan air, allowing adjustments to droplet size and spray pattern as appropriate without compromising required flow. Has been newly redesigned for greater anti-bearding.

- · Spraying viscous fluids
- Coating
- Glazing
- Sanitizing
- Humidification
- · Recirculating liquids


All nozzle inlet connections: 1/8" female NPT

The ViscoMist[™] has greatly minimized the following problem, but it is still a situation to be aware of:

Bearding/Caking

- What is it-Build-up of material around the inside or outside of the orifice due to evaporation of the liquid being sprayed. This dried solid material blocks all or part of the nozzle orifice or internal flow passages.
- Symptoms
- Reduced flow rate
- Reduced spray angle
- Irregular spray pattern Solution—Thoroughly clean nozzle, if necessary, using cleansers and solvents which will not affect the nozzle material.

Description of inlet ports

The ViscoMist[™] has three Nozzle Body styles available.

For all styles, next to each

inlet port on the nozzle is

representing the spray

Atomizing Air (A)

The Atomizing Air Port

of the liquid into either

influences the atomization

small or large droplet sizes,

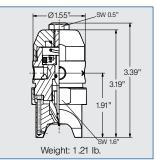
simultaneously affecting spray

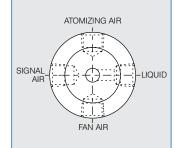
distribution in the center of the

spray pattern. To achieve finer

liquid atomization, increase the atomizing air pressure.

follows:


stamped one or more letters


aspect(s) that port controls.

These spray aspects and the

letter representing each are as

and their symbols

* For additional body styles, contact Lechler.

The Fan Air Port flattens the

a flat fan spray distribution.

With the appropriate nozzle

distribution can be adjusted

independently to control the

a wider spray distribution,

liquid spray width. To achieve

increase the fan air pressure.

The liquid flow rate is directly

pressure rate. Subsequently,

liquid flow rate will be. The

liquid "On" or "Off" cycle is

dependent on the Pistoncontrolled Signal Air supply.

the higher the liquid pressure

proportional to the liquid

rate is, the higher the

Signal Air (P) Air supplied to this port actuates a piston located within the nozzle to retract or extend the Clean-Out/Liquid Shut-Off Needle. Retracting the needle allows the liquid to flow from

body configuration, this

atomized liquid, thus giving it

Fan Air (F)

Liquid(M)

Nozzle Body 4*

This configuration has four process connections: one for liquid, and three for air. One air connection controls atomizing air, one controls fan air, and the third controls signal air for onoff operations, so each aspect can be individually adjusted. Therefore, atomizing air can be set at less than 40 psi if desired without affecting the on-off operation, for instance.

For ViscoMist replacement kits, see page 58.

57

the nozzle. A minimum of 40

psi air pressure to this port is

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	r Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	Nozz	le		
Config-		diam.												Fan	Air Pre	essure	e (psi)				
uration (see											0#			5			10			20	
pg. 54)		(in)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
								_	5	2	3	5	5	5	8	5	7	9	7	8	9
			2.2	.50	2.2	.44	.59	5	10	2	2	4	4	7	9	7	9	13	10	12	14
			3.6 4.4	.66 .74	3.6 4.4	.57 .64	.76 .85		20 5	- 2	- 3	- 4	6 5	8 6	12	9	13	15 10	11 8	13 10	16 13
			5	.80	5	.67	.05 .91	10	10	2	3	4	4	5	7	6	8	10	9	11	14
			10	1.2	10	.96	1.3		20	-	-	-	5	7	8	7	10	14	10	13	17
4	176. 401. 1Y. 01	.015	15	1.5	15	1.2	1.7		5	2	3	4	3	4	6	4	5	7	6	8	10
			20	1.7	20	1.4	2.0	20	10	2	3	4	2	4	5	4	5	7	6	8	10
			30	2.1	30	1.8	2.7		20	-	-	-	3	4	6	5	7	8	7	10	13
			40	2.4	40	2.3	3.3	10	5	2	2	4	2	2	4	2	4	5	7	6	7
			50 58	2.7 3.0	50 58	2.7 3.1	4.0 4.5	40	10 20	2	3	5 3	2 2	3 3	5 5	3	4	5 6	5 5	7	8 9
			50	0.0	50	0.1	4.5		20		2	5	2	5			1 4	0	5	1	

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	ir Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	n Nozz	le		
Config-		diam.												Fan	Air Pre	essure	e (psi)				
uration (see		Ce d									0#			5			10			20	
pg. 54)		(in) (Unifice	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	2	2	3	6	7	9	6	8	9	8	9	10
			2.2	1.1	2.2	.46	.59	5	10	-	-	-	5	7	9	8	10	15	12	14	20
			3.6	1.4	3.6	.59	.76		20	-	-	-	-	-	-	9	12	15	14	16	20
			4.4	1.6	4.4	.65	.85	10	5	2	3	4	4	6	7	5	7	9	7	9	10
			5 10	1.7 2.5	5 10	.69 .98	.91 1.3	10	10 20	2	2	4	5	· /	8	6	9	10 12	10 11	11 13	14 16
4	176, 402, 1Y, 01	.023	15	3.0	15	1.2	1.3		5	- 2	- 3	- 4	- 3	-	- 4	5	6	8	5	7	9
1.		.020	20	3.5	20	1.4	2.0	20	10	2	2	3	4	5	7	5	6	8	7	8	11
			30	4.3	30	1.9	2.7		20	-	-	-	4	5	8	5	7	9	8	9	13
			40	5.1	40	2.3	3.3		5	2	2	3	2	3	4	3	4	5	5	6	7
			50	5.7	50	2.7	4.0	40	10	1	2	4	2	3	4	4	4	5	5	6	8
			58	6.2	58	3.1	4.5		20	2	3	4	3	4	6	4	5	/	6	8	12

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	r Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	n Nozz	le		
Config-		diam.												Fan	Air Pre	essure	e (psi)				
uration (see											0#			5			10			20	
(see pg. 54)		(ini)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	-	-	-	7	10	12	12	15	18	13	16	20
			2.2 3.6	2.2 2.9	2.2 3.6	.28 .38	.59 .76	5	10 20	-	-	-	8	10 -	12	13 12	15 15	19 21	18 17	21 22	27 27
			4.4	3.3	4.4	.42	.85		5	1	2	3	6	8	11	11	14	18	12	15	19
			5	3.5	5	.46	.91	10	10	-	-	-	7	9	13	11	14	18	15	18	23
			10	5.1	10	.68	1.3		20	-	-	-	-	-	-	11	13	18	14	18	23
4	176. 403. 1Y. 01	.031	15 20	6.3 7.3	15 20	.86 .97	1.7 2.0	20	5 10	2	2	3	5 5	6	8 10	7	9	10 12	9 10	11 12	13 14
			30	9.0	30	1.3	2.0	20	20	-	-	-	-	-	-	9	11	12	10	12	20
			40	1.4	40	1.6	3.3		5	2	2	4	4	5	7	6	7	9	8	9	12
			50	11.7	50	1.9	4.0	40	10	-	-	-	5	6	8	6	8	10	9	11	15
			58	12.7	58	2.2	4.5		20	-	-	-	-	-	-	7	9	13	9	12	16

*These pressures are independently controlled so any combination of liquid, atomizing air, and fan air pressures can be selected.

Total SCFM output is the sum of the separate atomized air and fan air amounts for the individual inlet pressures used. # A cone-shaped spray is most likely to be produced if the fan air function is not utilized.

Continued on next page.

Material: 316L SS - We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 1Y.

For ViscoMist replacement kits, see page 58.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

EECHLER 58

Pneumatic atomizing

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	r Capac	ity*			Spra	iy Cov	erage	(in.) a	t Indic	ated D	istanc	e from	n Nozz	le		
Config-		diam.												Fan	Air Pre	essure	(psi)				
uration (see											0#			5			10			20	
pġ. 54)		(in.)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	-	-	-	7	10	13	12	15	18	14	16	21
			2.2	4.5	2.2	1.4	1.2	5	10	-	-	-	7	10	14	12	15	20	18	21	26
			3.6 4.4	5.8 6.4	3.6 4.4	1.8 2.0	1.6 1.7		20 5	-	-	-	- 5	- 7	- 10	10 8	15 10	18 13	17 11	21 13	29 17
			5	6.9	5	2.2	1.9	10	10	-	-	-	5	6	9	8	10	15	13	16	20
			10	9.9	10	3.3	2.7		20	-	-	-	-	-	-	7	9	13	12	15	23
4	176. 404. 1Y. 01	.042	15	12.1	15	4.3	3.4		5	2	3	4	4	5	7	5	7	9	8	10	13
			20	14.0	20	5.2	4.1	20	10	-	-	-	4	5	7	5	7	9	9	11	15
			30 40	17.2 2.0	30 40	6.8 8.4	5.3 6.6		20 5	- 2	- 3	-	4	5	6	6	8 5	11	8	11	16 10
			40 50	2.0	40 50	0.4	0.0 7.8	40	5 10	2	3	4 4	3	4	6	4	5 5	7	6	8	10
			58	24.2	58	11.5	8.9	-0	20	-	-	-	3	4	6	4	5	7	6	8	12

Nozzle Body	Ordering no.		Liq. Ca	pacity*	A	ir Capac	ity*			Spra	iy Cov	erage	(in.) a	t Indic	ated D	istanc	e from	Nozz	le		
Config-		diam.												Fan	Air Pre	essure	(psi)				
uration (see		Se d									0*			5			10			20	
(see pg. 54)		(in.)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	-	-	-	9	11	17	13	17	22	18	21	28
			2.2	6.5	2.2	1.3	1.2	5	10	-	-	-	-	-	-	14	18	24	19	23	22
			3.6	8.4	3.6	1.7	1.6		20	-	-	-	-	-	-	10	14	21	15	22	32
			4.4 5	9.3 1.0	4.4 5	1.9 2.0	1.7 1.9	10	5 10	-	-	-	6	9	13	9 10	13 12	18 19	13 14	16 18	21 24
			10	14.4	10	3.0	2.7	10	20	-	-	-	-	-	-	9	13	19	13	18	24 27
4	176, 405, 1Y, 01	.052	15	17.7	15	4.0	3.4		5	-	-	-	4	6	8	6	8	11	9	11	15
			20	20.2	20	4.7	4.1	20	10	-	-	-	4	6	8	6	8	12	9	12	15
			30	25	30	6.1	5.3		20	-	-	-	-	-	-	5	8	11	9	12	17
			40	29	40	7.5	6.6		5	2	3	4	3	4	6	4	5	8	6	7	11
			50	33	50	8.9	7.8	40	10	-	-	-	3	4	6	4	5	8	6	8	12
			58	35	58	1.1	8.9		20	-	-	-	3	4	6	4	5	8	6	8	12

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	r Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	n Nozz	le		
Config-		diam.												Fan	Air Pre	essure	e (psi)				
uration (see											10			15			20			30	
pg. 54)		(in)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	8	11	17	10	14	20	12	15	23	12	15	20
			2.2	11.0	2.2	.90	1.2	20	10	8	11	17	10	13	20	12	15	22	-	-	-
			3.6 4.4	14.1 15.7	3.6 4.4	1.2 1.3	1.6 1.7		20 5	8	11 9	17 13	10 8	13 11	20 16	12 9	16 12	24 18	- 10	- 13	- 17
			4.4 5	16.8	4.4 5	1.3	1.9	30	10	7	9	12	8	10	15	9	12	18	11	13	20
			10	24	10	2.0	2.7		20	6	9	13	7	10	14	9	11	17	11	14	20
4	176. 406. 1Y. 01	.067	15	30	15	2.6	3.4		5	6	7	11	7	9	12	7	10	14	8	11	17
			20	34	20	3.0	4.1	40	10	6	8	12	7	9	13	7	10	15	9	12	16
			30	42	30	4.0	5.3		20	5	7	10	6	8	13	7	10	15	9	13	19
			40	48	40	4.9	6.6	50	5	6	8	12	1	8	13	7	10	14	8	11	16
			50 58	54 58	50 58	5.8 6.6	7.8 8.9	50	10 20	5 5		10	6 6	8 8	13 12		9 9	14 14	8 9	11 11	17 17
			50	50	50	0.0	0.9		20	L			0	<u> </u>	12	L′	3	14	3		

* These pressures are independently controlled so any combination of liquid, atomizing air, and fan air pressures can be selected.

Total SCFM output is the sum of the separate atomized air and fan air amounts for the individual inlet pressures used. * A cone-shaped spray is most likely to be produced if the fan air function is not utilized.

Continued on next page.

Material: 316L SS - We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 1Y.

For ViscoMist replacement kits, see page 58.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

Pneumatic atomizing

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	ir Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	n Nozz	le		
Config-		diam.												Fan	Air Pre	essure	e (psi)				
uration (see		De d									10			15			20			30	
pg. 54)		(in)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	5	8	12	8	10	14	10	12	18	13	16	21
			2.2	15.6	2.2	2.1	2.0	20	10	5	7	11	7	10	15	9	12	17	12	16	24
			3.6 4.4	20 22	3.6 4.4	2.8 3.1	2.6 2.9		20 5	- 4	- 6	- 9	6 6	9 8	14	9	12 9	17 14	11 10	15 13	22 19
			4.4 5	22	4.4 5	3.4	2.9 3.1	30	5 10	4	6	9	6	8		7	10	14	10	13	19
			10	34	10	5.0	4.6	00	20	-	-	-	-	-	-	6	9	13	9	12	17
4	176. 407. 1Y. 01	.081	15	42	15	6.4	5.9		5	4	5	7	5	7	10	6	8	12	8	11	15
			20	49	20	7.6	7.2	40	10	4	5	8	5	7	10	6	8	12	8	11	16
			30	60	30	1.0	9.4		20	4	5	8	5	6	10	6	8	12	8	11	15
			40	69	40	12.3	11.6	50	5	4	5	6	5	6	9	6	8	10	7	10	16
			50 58	78 84	50 58	14.6 16.4	13.7 15.5	50	10 20	4 3	5 5	7 8	4	6 6	9 9	5 5	8	12 10	7	10 10	14 14
			50	04	50	10.4	15.5		20	5		0	4	0	9	5		10			

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	r Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	n Nozz	le		
Config-		diam.												Fan	Air Pre	essure	e (psi)				
uration (see											10			15			20			30	
pg. 54)		(in) (rifice	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	7	10	14	9	12	18	10	14	21	15	19	28
			2.2	20	2.2	1.6	2.0	20	10	6	8	14	8	11	17	11	15	22	15	21	30
			3.6	26	3.6	2.3	2.6		20	-	-	-	-	-	-	9	12	15	14	16	20
			4.4 5	28 30	4.4 5	2.5 2.7	2.9 3.1	30	5 10	5 5	8	12 10	7	10 9	14 14	8 9	11	16 16	11 11	18 15	22 21
			10	43	10	4.0	4.6	50	20	-	-	-	6	8	13	8	11	15	11	15	22
4	176. 408. 1Y. 01	.093	15	53	15	5.1	5.9		5	5	7	9	6	8	11	7	10	14	10	14	18
			20	61	20	6.0	7.2	40	10	4	6	9	6	8	12	7	10	14	9	13	19
			30	74	30	7.9	9.4		20	4	5	8	5	7	11	6	9	14	9	13	18
			40	86	40	9.6	11.6	50	5	4	6	7	5		9	6	8	11	8	12	17
			50 58	95 103	50 58	11.3	13.7	50	10 20	4 3	5	7 8	5	6	10 9	6 6	8 8	12 13	8 8	11 12	18 18
			58	103	58	12.8	15.5		20	3	5	Ø	5	0	9	0	0	13	ð	12	

Nozzle Body	Ordering no.		Liq. Ca	pacity*	Ai	r Capac	ity*			Spra	ay Cov	erage	(in.) a	t Indic	ated D	istanc	e from	Nozz	е		
Config-		diam												Fan	Air Pre	essure	e (psi)				
uration											10			15			20			30	
(see pg. 54)		(iu)	Inlet Press. (psi)	Liq. Flow (GPH)	Inlet Press. (psi)	Atom. Air (SCFM)	Fan Air (SCFM)	Atom. Air (psi)	Liq. Flow (psi)	D1	D2	D3	D1	D2	D3	D1	D2	D3	D1	D2	D3
									5	7	10	16	9	12	18	11	16	21	15	20	27
			2.2 3.6	22 29	2.2 3.6	1.1 1.9	2.0 2.6	20	10 20	6 -	9	14 -	9	12 -	18 -	10 10	14 14	22 21	16 16	21 21	31 31
			4.4	32	4.4	2.2	2.9		5	5	8	12	7	10	15	8	11	18	11	14	22
			5	34	5	2.4	3.1	30	10	5	7	11	7	9	14	8	11	18	11	15	24
	470 400 47 04	100	10	48	10	3.9	4.6		20	-	-	-	-	-	-	8	10	17	10	15	22
4	176. 409. 1Y. 01	.100	15 20	58 68	15 20	5.0 6.0	5.9 7.2	40	5 10	4	6 6	9 9	6 6	8 8	13 12	7	9 10	16 16	10 9	14 14	20 22
			30	83	30	7.7	9.4	40	20	4	6	8	6	8	12	7	10	16	9	13	20
			40	96	40	9.6	11.6		5	4	6	9	5	7	11	6	8	13	9	12	18
			50	107	50	11.3	13.7	50	10	4	6	9	6	8	12	6	8	14	9	12	17
			58	115	58	12.9	15.6		20	4	5	8	5	7	10	6	8	13	9	12	18

*These pressures are independently controlled so any combination of liquid, atomizing air, and fan air pressures can be selected.

Total SCFM output is the sum of the separate atomized air and fan air amounts for the individual inlet pressures used.

* A cone-shaped spray is most likely to be produced if the fan air function is not utilized.

Material: 316L SS - We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 1Y.

For ViscoMist replacement kits, see page 58.

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

Replacement Kits for the ViscoMist

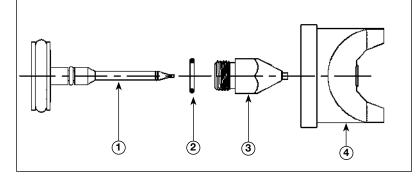
For replacing the basic wear parts for the ViscoMist, order from the following list:

Ordering no.	Fluid nozzle orifice size (in.)	Description Includes: 1 Needle assembly 2 O-ring 3 Fluid nozzle
017. 601. 1Y. 01	.015	Wear Replacement Kit, Nozzle #1, 316 SS
017. 602. 1Y. 01	.023	Wear Replacement Kit, Nozzle #2, 316 SS
017. 603. 1Y. 01	.031	Wear Replacement Kit, Nozzle #3, 316 SS
017. 604. 1Y. 01	.042	Wear Replacement Kit, Nozzle #4, 316 SS
017. 605. 1Y. 01	.052	Wear Replacement Kit, Nozzle #5, 316 SS
017. 606. 1Y. 01	.067	Wear Replacement Kit, Nozzle #6, 316 SS
017. 607. 1Y. 01	.081	Wear Replacement Kit, Nozzle #7, 316 SS
017. 608. 1Y. 01	.093	Wear Replacement Kit, Nozzle #8, 316 SS
017. 609. 1Y. 01	.100	Wear Replacement Kit, Nozzle #9, 316 SS

Material: 316L SS

Note: Instructions for changing out any and all ViscoMist component parts come with each Replacement Kit purchased.

Nozzle fluid tips and spreaders (air caps) are interchangeable to provide various set-up combinations.


For replacing the wear parts and the spreader of the ViscoMist, order the following:

Ordering no.	Fluid nozzle orifice size (in.)	Description Includes: 1 Needle assembly 2 O-ring 3 Fluid nozzle 4 Spreader (air cap)
017, 601, 1Y, 00	.015	Capacity Replacement Kit, Nozzle #1
017. 602. 1Y. 00	.023	Capacity Replacement Kit, Nozzle #2
017. 603. 1Y. 00	.031	Capacity Replacement Kit, Nozzle #3
017. 604. 1Y. 00	.042	Capacity Replacement Kit, Nozzle #4
017. 605. 1Y. 00	.052	Capacity Replacement Kit, Nozzle #5
017. 606. 1Y. 00	.067	Capacity Replacement Kit, Nozzle #6
017. 607. 1Y. 00	.081	Capacity Replacement Kit, Nozzle #7
017. 608. 1Y. 00	.093	Capacity Replacement Kit, Nozzle #8
017. 609. 1Y. 00	.100	Capacity Replacement Kit, Nozzle #9

To just replace the o-ring in the ViscoMist, order the following:

Ordering n	0.		Description
Туре	Mat.	no.*	
	Viton V	мода 6С	
017. 600. xx. 01. 03	0	0	O-ring Replacement Kit

* 7A (Viton) is the standard material for the O-ring while 6C (EPDM) is optional.

Position #	Description
1	Needle Assembly
2	O-ring
3	Fluid Nozzle
4	Spreader
() 2 3 4	O-ring Fluid Nozzle

For various configurations to mount your pneumatic air nozzles, see the Lances and Nozzle Headers section beginning on page 143.

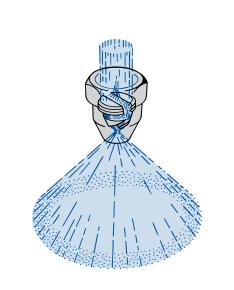
Pneumatic atomizing

Lechler offers several other atomizing nozzles besides those in this catalog which may be appropriate for your application. If a nozzle in either of the styles below is specified for a job of yours or you would just like more information about either one, please contact Lechler.

Spray pattern	Mode of liquid supply	Occurence of atomization	Series	Spray angle	Flow rate range	Application	More information
Full cone	Pressure principle	External mix	150	20°–30°	.13–17 gph	Chemical process engineering Cooling Atomization of viscous liquids	Please ask for our "Chemical" brochure
Flat fan	Pressure principle	Internal mix	166	20°-80°	.11–25 gph	Web dampening Cooling Humidification of goods Atomization of viscous liquids	Please ask for our "Food and Beverage" brochure
Flat fan	Pressure principle	Internal mix	166H	20°–140°	.11–25 gph	Coating and cleaning Surface treatment Humidification Lubrication processes	Please ask for our "Food and Beverage" brochure
Full cone	Pressure principle	Internal mix	170 171 180	15°	2.25–77 gph	Gas cooling FGD Exhaust gas conditioning Dust control	Please ask for our "Chemical" brochure

www.LechlerUSA.com

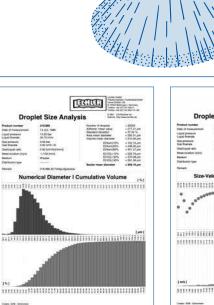
Hollow cone nozzles

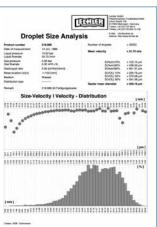

Axial hollow cone nozzles

Hollow cone nozzles produce the smallest average droplet sizes of any purely hydraulic nozzle. Axial hollow cones create the smallest droplets of any type of hollow cone nozzle. The spiral grooves in the swirl inserts of these nozzles ensure an efficient whirling of the liquid which creates uniform droplets throughout and maximizes the total exposed surface area. Creation of such a spray means that the liquid can be absorbed faster, cool quicker, and moisturize better for more effective application spraying. As a result, these nozzles are suitable for applications where fine, uniform spray is required, such as for cooling and cleaning of gas, absorption processes, dust control, product dampening, oil spraying, and air humidifying.

Tangential hollow cone nozzles

Hollow cone

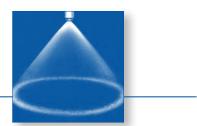

Tangential hollow cone nozzles also provide a very uniform hollow cone spray. This is due to the right-angle flow the fluid takes inside the nozzle body. An off-center inlet combines with the 90° turn the fluid makes to create a whirling rotation of the liquid within the nozzle chamber, ultimately resulting in smaller droplets and a consistent distribution upon discharge. With tangential hollow cones, spray angles up to 130° can be achieved. Due to their insert-free interiors, tangential hollow cone nozzles are basically self-cleaning and resistant to clogging, even with rather poor water conditions. Typical applications for tangential hollow cone nozzles include: air humidification in air conditioning systems, spray pond cooling, cooling of plastic pipes after extrusion, and gas cleaning in chemical and environmental engineering installations.


- Finest droplet particles
- Narrow free cross-sections
- Maximum spray angle: 90°

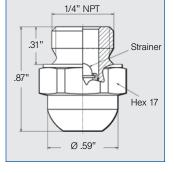
- Coarser droplets than axial hollow cone nozzles
 - Large free cross-sections

- Wide spray angles up to 130°
 - Self-cleaning, clog-resistant

Cumulated volume distribution



Velocity distribution by number


Hollow cone nozzles **Axial-low flow** Series 220

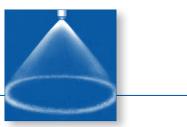
Extremely fine, fog-like hollow cone spray.

- **Applications:**
- DisinfectionHumidification
- Cooling

Nozzles of series 220 replace series 212 which are still available on request.

¢		Orderin Mater	<u> </u>	Connection	diam.	ge	size er			````	Flow Rate ons Per M				Spray Diam. D (in.) @ 72 psi	Theoretical Spray Width @ 72.5 psi
Spray angle		1 AISI 430F*	1 1	Male ¹ /4" NPT	Orifice (in.)	Free (:ui) Passage	(jui) (ju) (jui) (ju)) (ju) (ju)) (j	30 psi	45 psi	liters per minute 5 bar	75 psi	100 psi	150 psi	300 psi	H=4"	(5 bar) H=100mm
60°	220.004	0	0	BC	.004	.004	.002	-	-	.013	.003	.004	.005	.007	4	100
	220.014	0	0	BC	.006	.006	.002	-	.004	.019	.005	.006	.007	.010	4	100
80°	220.085	0	0	BC	.010	.010	.004	.007	.008	.040	.011	.012	.015	.021	6	140
	220. 125	0	0	BC	.014	.014	.004	.010	.013	.062	.016	.019	.023	.033	6	140
	220. 145	0	0	BC	.016	.016	.004	.014	.017	.082	.022	.026	.031	.043	6	140
	220. 165	0	0	BC	.018	.018	.004	.017	.021	.103	.027	.032	.039	.054	6	140

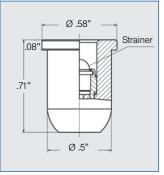
Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	220.004	+	1Y	+	BC	=	220. 004. 1Y. BC


The integrated strainer avoids clogging of the nozzle and increases its service life.

* Materials

Mat. no.	Housing	Nozzle insert	Strainer
11	AISI 430F	AISI 430F	AISI 316L
1Y	AISI 316L	AISI 316L	AISI 316L

Hollow cone nozzles Axial-low flow for retaining nut Series 226



Hollow cone nozzle for assembly with retaining nut. Extremely fine, fog-like hollow cone spray.

Applications:

- Disinfection
- Humidification
- Cooling

¢	Orderin Type	g no. Material no.	diam.	eb	size er			`	Flow Rate ons Per M				Spray Diam. D (in.)	Theoretical Spray Width
Spray angle	1300	AISI 303*	Orifice	Free Passag	Mesh s Straine	30	45	liters per minute 5	75	100	150	300	@ 72 psi	@ 72.5 psi (5 bar)
aν		16	(in.)	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	H=4"	H=100mm
60°	226.004	0	.004	.004	.002	-	-	.013	.003	.004	.005	.007	4	100
	226.014	0	.006	.006	.002	-	.004	.019	.005	.006	.007	.010	4	100
80°	226.085	0	.010	.010	.004	.007	.008	.040	.011	.012	.015	.021	6	140
	226. 125	0	.014	.014	.004	.010	.013	.062	.016	.019	.023	.033	6	140
	226. 145	0	.016	.016	.004	.014	.017	.082	.022	.026	.031	.043	6	140
	226. 165	0	.018	.018	.004	.017	.021	.103	.027	.032	.039	.054	6	140

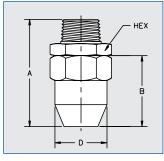
Example	Туре	+	Material no.	=	Ordering no.
for ordering:	226.004	+	16	=	220. 004. 16

The integrated strainer avoids clogging of the nozzle and increases its service life.

* Materials

Mat. no.	Housing	Nozzle insert	Strainer
16	AISI 303	AISI 430F	AISI 316L

Hollow cone


Hollow cone nozzles Axial-low flow Series 214 / 216

Precision axial design offers fine atomization and uniform distribution. Swirl insert removable for cleaning.

Applications:

- Gas cooling or cleaning
- Steam de-superheating
- Spray drying
- Dust suppression

		Dimen	sions (ir	ı.)		
Ordering no.	Thread Size Male NPT	Hex Size	А	в	D	Approx. Wt. (Ib.) Brass
214. xxx. YY. BA	1/8	11/16	1.531	.718	.625	.15
214. xxx. YY. BC	1/4	11/16	1.593	.718	.625	.20
216. xxx. YY. BC	1/4	7/8	1.468	1.156	.843	.25
216. xxx. YY. BE	3/8	7/8	1.468	1.156	.843	.25

x		Order	ring no.		diam.				Spray Diam.					
2	Туре	Mater	ial no.	Connection		ge			(Ga liters per	allons Per Minu I	ite)			D (in.) @ 40 psi
Spray angle		310 SS 17	30 Brass	Male NPT ¹ /8" ¹ /4" ³ /8"	(in)	Tree ("U) Passa	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"
		./		/0 /4 /0	· · · ·	()		201		201	201	201	201	
60 °	214. 184	0	0	BABC -	.020	.020	.01	.02	.08	.02	.03	.04	.04	8
80°	214. 245	0	0	BABC -	.039	.020	.02	.04	.16	.05	.06	.07	.08	18
	214. 305	0	0	BABC -	.071	.020	.05	.07	.32	.10	.12	.14	.16	18
60°	216. 324	0	0	- BC BE	.039	.039	.06	.09	.40	.12	.15	.18	.20	8
	216. 364	0	0	- BC BE	.055	.055	.10	.14	.63	.20	.24	.28	.31	8
	216. 404	0	0	- BC BE	.079	.079	.16	.22	1.0	.31	.38	.44	.49	8
90°	216. 496	0	0	- BC BE	.118	.079	.26	.37	1.7	.53	.65	.75	.83	20
	216. 566	0	0	- BC BE	.158	.079	.39	.55	2.5	.78	.95	1.1	1.2	20
	216. 646	0	0	- BC BE	.138	.079	.62	.88	4.0	1.2	1.5	1.8	2.0	20
	216.686	0	0	- BC BE	.158	.079	.78	1.1	5.0	1.6	1.9	2.2	2.5	20
	216. 726	0	0	- BC BE	.197	.079	.98	1.4	6.3	2.0	2.4	2.8	3.1	20
	216. 776	0	0	- BC BE	.236	.079	1.3	1.9	8.5	2.6	3.2	3.7	4.2	20

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	216. 496	+	17	+	BC	=	216. 496. 17. BC

This product line is also available in larger capacities up to 5 gpm @ 40 psi. Please contact Lechler if you require a larger size.

Hollow cone nozzles Axial-flow Series 2TR

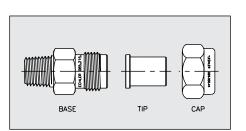
Hollow cone nozzle with fine uniform spray. Assembly with retaining nut.


Applications:

- Humidification of air
- Cooling of gases
- Dust control

Hollow cone

Spraying onto filters



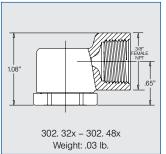
4	Ordering no.	Color	diam.	ab		Flow Rate (Gallons Per Minute)								
Spray angle			(in.)	(ini)	10 psi	20 psi	liters per minute 2 bar	40 psi	60 psi	80 psi	100 psi	@ 40 psi H=10"		
80°	2TR. 245. C8 2TR. 275. C8 2TR. 305. C8 2TR. 345. C8 2TR. 365. C8 2TR. 405. C8 2TR. 445. C8 2TR. 445. C8	Magenta Black Orange Green Yellow Blue Red Brown	.026 .032 .035 .043 .055 .067 .079 .087	.022 .028 .032 .035 .037 .043 .043 .047 .051	.02 .03 .05 .07 .10 .15 .20 .24	.04 .05 .07 .11 .14 .21 .28 .34	.16 .22 .32 .48 .63 .96 1.3 1.6	.05 .07 .10 .15 .20 .30 .39 .49	.06 .08 .12 .18 .24 .36 .48 .60	.07 .10 .14 .21 .28 .42 .55 .69	.08 .11 .16 .24 .31 .47 .62 .77	18 18 18 18 18 18 18 18 18 18		

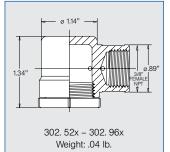
Materials											
Material no.	Nozzle housing	Nozzle insert									
C8	POM	Zirconium Oxide									

Bases and Caps for Mounting


Inlet NPT Male	Outlet Male	Part No.				
1/4" 3/8"	11/16 x 16 11/16 x 16	065. 215. XX. 10 065. 211. XX. 10	Standard Materials: 17 316 SS			
1/4" 3/8"	3/8 BSPP 3/8 BSPP	065. 215. XX. 11 065. 215. XX. 12	30 Brass			
Caps						
To fit 11/16x1 To fit 3/8 BSF		069. 000. XX. 00 065. 200. XX. 00				

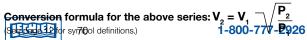
A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.




Uniform hollow cone spray using a clog-resistant design

Applications:

- Humidification
- Air washing
- Dust collectors
- Pasteurizer cooling lines
- Tunnel coolers



X	Ordering no.				diam.		Flow Rate (Gallons Per Minute)								Spray Diameter		
	Туре	Mater	ial no.	Conr	nection	dia	age									D (in.) @ 30 psi	
ه ح		5		Fer	male	Orifice	ssa			liters per minute							
Spray angle		uojńN 51	≗ 53	3/8" NPT	3/8" BSPP	රි (in.)	Line (in)	10	20	2 bar	30	40 psi	60	80	100	H=10"	, H=20"
9 00		51	55	INPI	BSPP	(111.)	(111.)	psi	psi	Dai	psi	psi	psi	psi	psi		Π=20
90°	302. 326	0	-	-	00	.047	.035	.06	.09	.40	.11	.12	.15	.18	.20	16	28
	302.366	0	-	-	00	.050	.051	.10	.14	.63	.17	.20	.24	.28	.31	16	28
	302.406	0	-	-	00	.102	.055	.16	.22	1.0	.27	.31	.38	.44	.49	16	35
	302. 526	0	0	BF	-	.197	.079	.31	.44	2.0	.54	.62	.76	.88	.98	16	35
	302.606	0	0	BF	-	.197	.126	.49	.69	3.2	.86	.98	1.2	1.4	1.5	18	37
	302.766	0	-	BF	-	.355	.169	1.2	1.8	8.0	2.2	2.5	3.0	3.5	3.9	20	41
	302.846	0	0	BF	-	.433	.205	1.9	2.7	12.5	3.4	3.9	4.8	5.5	6.1	22	45
	302.886	0	0	BF	-	.433	.252	2.5	3.5	16.0	4.3	5.0	6.1	7.0	7.8	22	45
	302.966	0	-	BF	-	.433	.339	3.9	5.5	25.0	6.7	7.8	9.5	11.0	12.3	22	45
130°	302. 408	0	-	-	00	.144	.051	.16	.22	1.0	.27	.31	.38	.44	.49	28	54
	302. 528	0	-	BF	-	.197	.079	.31	.44	2.0	.54	.62	.76	.88	.98	28	54
	302.608	0	-	BF	-	.197	.126	.49	.69	3.2	.86	.98	1.2	1.4	1.5	31	60
	302.648	-	0	BF	-	.296	.118	.62	.88	4.0	1.1	1.2	1.5	1.8	2.0	37	73
	302.728	0	-	BF	-	.296	.162	.98	1.4	6.3	1.7	2.0	2.4	2.8	3.1	37	73
	302.768	0	-	BF	-	.355	.169	1.2	1.8	8.0	2.2	2.5	3.0	3.5	3.9	37	73
	302.848	0	-	BF	-	.433	.205	1.9	2.7	12.5	3.7	3.9	4.8	5.5	6.1	37	73
	302.888	0	-	BF	-	.433	.252	2.5	3.5	16.0	4.3	5.0	6.1	7.0	7.9	37	73

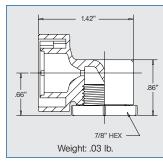
Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	302. 566	+	51	+	BF	=	302. 566. 51. BF

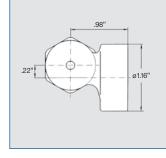
Hollow cone

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Hollow cone nozzles Tangential-flow TWISTLOC quick release mount Series 302 Plastic version

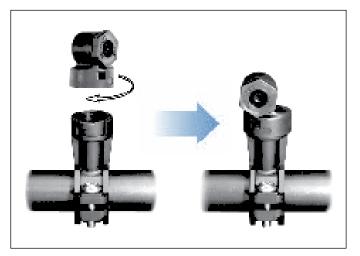
Uniform hollow cone spray using a clog-resistant design. Connects by hand with a quick twist.


Applications:


- Humidification
- Air washing
- Dust collectors

Hollow cone

- Pasteurizer cooling lines
- Tunnel coolers



X	C	Ordering	no.		diam.						Rate Per Minute)					Diameter (in.)
2	Туре	Mater	ial no.	Conn.	di:	age			liters per		er minute)					0 psi
<u> </u>		Nylon	Σ		Orifice	Free Pass			liters per minute						/	<u> </u>
Spray angle			₩04 56	Twistloc	ō (in.)	正改 (in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	H=10"	, H=20"
45°	302.503	0	-	КВ	.193	.081	.28	.39	1.8	.48	.56	.68	.79	.88	9	22
60°	302.464	-	0	KB	.150	.077	.22	.31	1.4	.38	.43	.53	.61	.69	12	22
80°	302.545	-	0	KB	.193	.091	.35	.49	2.2	.59	.70	.85	.98	1.10	16	28
90°	302.326	0	0	KB	.055	.041	.06	.09	.40	.11	.12	.15	.18	.20	16	28
	302.406	0	0	KB	.150	.061	.16	.22	1.0	.27	.31	.38	.44	.49	16	35
	302.486	0	-	KB	.150	.083	.25	.35	1.6	.43	.50	.61	.70	.78	16	35
	302.606	0	-	KB	.209	.116	.49	.69	3.2	.86	.98	1.2	1.4	1.5	19	35
130°	302.368	-	0	KB	.083	.051	.10	.14	.63	.17	.20	.24	.28	.31	28	54
	302.408	0	0	KB	.083	.079	.16	.22	1.0	.27	.31	.38	.44	.49	28	54
	302.468	0	-	KB	.110	.095	.22	.31	1.4	.38	.43	.53	.61	.69	28	54
	302.488	0	-	КВ	.110	.108	.25	.35	1.6	.43	.50	.61	.70	.78	28	54

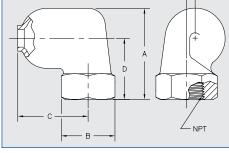
Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	302. 408	+	51	+	KB	=	302. 408. 51. KB

Plastic TWISTLOC mounting system

These nozzles mount by hand with a quarter turn using Lechler's TWISTLOC bases and accessories.

Hollow cone nozzles Tangential-flow Ramp Bottom[®] Series 373

Hollow cone spray with fine droplets and uniform distribution even at low pressure. Patented swirl chamber design with builtin ramp extends service life.


Applications:

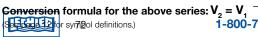
Hollow cone

- Wet scrubbers
- Gas cooling and conditioning
- Dust suppression
- Chemical reactors
- Spray pond cooling

Inlet	Dime	ensions (ir	ı.)		
(Female NPT)	А	B (Hex)	С	D	Wt. (lb.)
1	2.62	1-5/8	2.05	1.78	.8
1-1/4	3.03	1-7/8	2.56	2.00	1.4
1-1/2	3.81	2-3/16	3.19	2.56	2.4
2	4.25	2-13/16	3.69	2.81	3.1
3	6.03	4	4.62	4.50	17

		Orderir	ng no.				diam.				(Gal	Flow Ra						oray Ang	
Туре	Mat. no.		С	onnecti	on		0				(Gai	liters per	wiiniute)				i in	degrees	; at
	SS		F	emale NF	т		Orific					minúte							
	³¹⁶	1"	1 ¹ /4"	1 ¹ /2"	2"	3"	O (in.)	5 psi	10 psi	15 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	5 psi	15 psi	40 psi
373. 115	0	BN	-	-	-	-	0.45	6.6	9.3	11	13	60	19	23	26	29	64	64	71
373. 175	0	BN	-	0.52					13	16	19	85	27	32	37	42	80	80	82
373. 235	0	-	BQ	-	-	-	0.64	13	19	23	27	121	38	46	53	59	66	66	75
373. 285	0	-	BQ	-	-	-	0.74	18	26	32	37	167	52	63	73	82	80	80	84
373. 325	0	-	-	BS	-	-	0.8	21	30	37	43	196	61	74	86	96	80	80	85
373. 365	0	-	-	BS	-	-	0.95	27	39	47	54	248	77	94	109	122	74	74	77
373. 445	0	-	-	-	BW	-	1.14	45	63	77	89	406	126	154	178	199	77	77	80
373. 465	0	-	-	-	BW	-	1.21	51	72	88	101	461	143	175	202	226	82	82	90
373. 514	0	-	-	-	-	MB	1.45	65	92	112	129	590	183	224	259	289	56*	62**	-
373. 554	0	-	-	-	-	MB	1.62	81	115	141	163	741	230	282	325	364	62*	68**	-

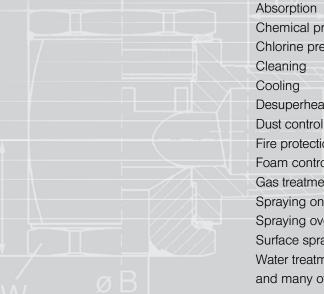
* degree is for 3 psi


** degree is for 7 psi

Example	Туре	+	Material no. +	-	Conn.	=	Ordering no.
for ordering:	373. 325	+	17 +	-	BS	=	373. 325. 17. BS

This product line is also available in larger capacities with inlets up to 6" in size. Please contact Lechler if you have an application requiring a larger size.

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.


 $V_2 = V_1 - \frac{P_2}{P_2}$ 1-800-777 - \overline{P}_2

www.LechlerUSA.com

Full cone nozzles

Absorption
Chemical process engineering
Chlorine precipitation
Cleaning
Cooling
Desuperheating
Dust control
Fire protection
Foam control
Gas treatment
Spraying onto mats in air washers
Spraying over packings
Surface spraying
Water treatment
and many others

Full cone nozzles spray completely within the interior of a circular area. They are especially appropriate for cleaning, coating, dust suppression, or any application where the target is static. There are two different styles of full cone nozzles: **Axial** and **Tangential**.

Axial full cone nozzles

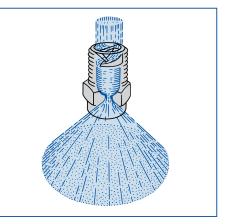
Axial full cone nozzles spray on the same axis as the inlet fluid. Lechler axial full cone nozzles evenly distribute liquid spray over the whole circular impact area. This high precision of distribution is due to internal vanes which create swirl chambers inside the nozzle. These vanes break up the inlet flow so that the liquid exits the orifice in a circular mass of droplets. While an axial full cone nozzle's vane typically has a smaller free passage than the nozzle's orifice diameter, the Series 460's x-style swirl insert

Tangential full cone nozzles

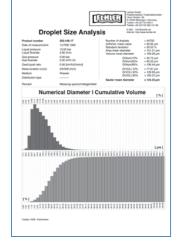
Tangential full cone nozzles spray at a 90° angle (or tangent) to the inlet fluid. Tangential full cone nozzles are particularly suited for spraying liquids with a high amount of particulate matter or for fire fighting applications. This is because unlike axial full cones, tangential full cone nozzles have no internal vanes, making them much less prone to clogging. The inlet fluid is tangentially supplied to a swirl chamber where it is put into rotation, much like in a tangential hollow cone nozzle. However, in this case the full

has larger free cross-sections, making it easier to spray particle-filled fluid. Axial full cone nozzles are available with several different spray angles and in a wide range of flow rates. Consequently, matching a specific axial full cone to your application can more easily be made. Therefore, axial full cones offer these advantages:

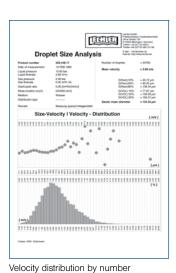
- Even liquid distribution
- Wide flow rate range
- Large number of available spray angles


cone spray is obtained when a sufficient amount of the fluid is disturbed by specially-arranged grooves, milled into the nozzle bottom, which cause a portion of the rotating liquid flow to diverge to the center of the swirl chamber. The result is a liquid spray which exits the nozzle orifice in an evenly distributed full cone pattern. Tangential full cone nozzles offer these advantages:


- Clog resistant, as they have no internal vanes
- Uniform liquid distribution
- Stable spray angles at various liquid pressures
- **Cluster head nozzles**


Lechler cluster head nozzles create a full cone spray of finely atomized droplets. This makes it particularly appropriate for applications in which a fine, fog-like, full cone atomized spray with a relatively large flow rate is necessary (e.g., gas exchange processes, steam cooling, or dust suppression). The cluster head nozzle achieves this pattern by overlapping seven separate hollow cones to form a full cone pattern with a larger droplet surface area compared to a similar standard full cone. It therefore creates the best of both worlds: it has the smaller droplet size and

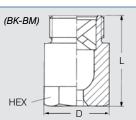
increased surface area of a hollow cone nozzle but with the overall coverage of a full cone. Such droplet sizes cannot be achieved by a single-orifice full cone spray nozzle with the same flow rate. The increased droplet surface area of the atomized liquid provides great efficiency in gas treatment and cooling applications. Cluster head nozzles offer these advantages:


- Large droplet surface area (i.e., fine or small droplet sizes)
- Full cone spray pattern
- Largest flow rates for the average droplet size produced

Cumulated volume distribution

Uniform spray pattern. Offered in a wide range of spray angles and flow rates.

Applications:

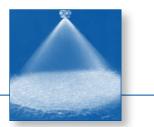

- Washing and cleaning
- Dust suppression
- Mist eliminator washing
- Chemical reactors
- Surface spraying
- · Chemical injection

	Din	nensions (in.)			
Connection Code	Inlet (Male NPT)	L	D	Hex	Weight Brass (Ib.)
BA	1/8	.71	.51	9/16	.03
BC	1/4	.87	.51	9/16	.04
BE	3/8	1.18	.63	11/16	.07
BG	1/2	1.65	.83	7/8	.15
BK	3/4	1.97	1.09	1-1/8	.38
BM	1	2.20	1.32	1-3/8	.79

Subject to technical modifications

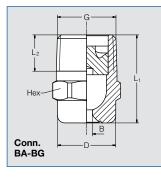
¢			Orde	ering I	10.					É	age					low Rate ns Per Mi	nute)				1 ' '	Diam. D
7	Туре	Mat				Conne	ction			Orifice diam.	passage			liters per	(Galloi		nute)				(in.) @) 30 psi
<u>a</u> e		PVDF	Polypro			Male I	NPT			ifice	Free p			minúte								
Spray angle		ੇ 5E	ି 53	1/8"	¹ /4"	³ /8"	¹ /2"	³ /4"	1"	Ö (in.)	Ĕ (in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	150 psi	⊢ ⊶ H=8"	∍; H=20"
				70			12	74	!	· · ·	. ,				poi	1	10.0	1	1			
60°	460. 644	0	-	-	вс	BE	-	-	-	.095	.075	.69	.91	4.0	1.1	1.2	1.4	1.6	1.7	2.0	9	22
	460.964	0	-	-	-	-	-	BK	-	.229	.193	4.3	5.7	25	6.7	7.5	8.8	9.9	10.8	12.7	9	22
90°	460. 326 460. 406	0	-	BA BA	-	-	-	-	-	.032	.022	.07 .17	.09 .23	0.4	.11 .27	.12 .30	.14	.16 .40	.17	.20	15	34
	460.406	0	-	BA	-	-	-	-	-	.047 .057	.033 .047	.17	.23	1.0 1.6	.27	.30	.35	.40	.43 .69	.51 .82	15 15	34 34
	460. 526	0	-	BA	-	-	-	-	-	.057	.047	.20	.30	2.0	.43	.40	.57	.03	.69	.02	15	34
	460.606	0	-	BA	-	BE	-	-	-	.003	.057	.53	.40	3.2	.84	.00	1.1	1.2	1.4	1.6	15	34
	460.646	0	_	- DA	вс	BE	_	_	_	.001	.071	.69	.91	4.0	1.1	1.2	1.4	1.6	1.7	2.0	15	38
	460, 726	0	-	-	-	BE	-	-	-	.116	.079	1.1	1.4	6.3	1.7	1.9	2.2	2.5	2.7	3.2	15	38
	460, 746	0	-	-	-	BE	-	-	-	.130	.075	1.2	1.6	7.1	1.9	2.1	2.5	2.8	3.1	3.6	15	38
	460.766	0	-	-	-	BE	-	-	-	.130	.095	1.4	1.8	8.0	2.1	2.4	2.8	3.2	3.5	4.1	15	38
	460.806	0	-	-	-	BE	-	-	-	.146	.106	1.7	2.3	10.0	2.7	3.0	3.5	4.0	4.3	5.1	15	38
	460.846	0	-	-	-	BE	-	-	-	.160	.126	2.2	2.8	12.5	3.3	3.8	4.4	5.0	5.4	6.4	15	38
	460.886	0	-	-	-	BE	BG	-	-	.185	.122	2.8	3.6	16.0	4.3	4.8	5.7	6.3	6.9	8.2	15	38
	460.926	0	-	-	-	-	BG	-	-	.205	.150	3.5	4.6	20	5.4	6.0	7.1	7.9	8.7	10.2	15	38
	460.966	0	-	-	-			ΒK	-	.229	.150	4.3	5.7	25	6.7	7.5	8.8	9.9	10.8	12.7	15	38
	461.006	0	-	-	-	-	BG	-	-	.252	.150	5.4	7.2	32	8.4	9.5	11.1	12.5	13.7	16.1	15	38
	461.046	-	0	-	-	-		ΒK	-	.284	.209	6.9	9.1	40	10.7	12.0	14.1	15.9	17.3	20	15	38
	461.086	0	-	-	-	-	-	BK	-	.323	.209	8.6	11.4	50	13.4	15.0	17.7	19.8	22	25	15	38
	461. 126	0	-	-	-	-	-		BM	.366	.256	10.9	14.3	63	16.9	18.9	22	25	27	32	15	38
	461. 146	0	-	-	-	-	-	-	BM	.390	.264	12.3	16.2	71	19.0	21	25	28	31	36	15	38
120°	460.408	0	-	BA	-	-	-	-	-	.047	.033	.17	.23	1.0	.27	.30	.35	.40	.43	.51	27	48
	460. 488 460. 528	0	-	BA BA	-	-	-	-	-	.059 .065	.039 .047	.28 .35	.36 .46	1.6 2.0	.43 .54	.48 .60	.57 .71	.63 .79	.69 .87	.82 1.0	27 27	48 48
	460. 528	0	-	BA	-	-	-	-	-	.065	.047	.35	.46	3.2	.54	.60	1.1	1.2	.07	1.0	27	40
	460.648	0	-	DA	BC	BE	-	-	-	.083	.055	.69	.72	4.0	1.1	1.2	1.4	1.2	1.4	2.0	27	48 52
	460. 728	ŏ	-	12	- 50	BE	-	-	-	.122	.003	1.1	1.4	6.3	1.7	1.2	2.2	2.5	2.7	3.2	27	52
	460.748	Õ	-	-	-	BE	-	-	-	.130	.075	1.2	1.6	7.1	1.9	2.1	2.5	2.8	3.1	3.6	27	52
	460.768	ŏ	_	_	-	BE	_	-	-	.138	.075	1.4	1.8	8.0	2.1	2.4	2.8	3.2	3.5	4.1	27	52
	460.808	Õ	-	-	-	BE	-	-	-	.150	.095	1.7	2.3	10.0	2.7	3.0	3.5	4.0	4.3	5.1	27	52
	460.848	0	-	-	-	BE	-	-	-	.165	.106	2.2	2.8	12.5	3.3	3.8	4.4	5.0	5.4	6.4	27	52
	460.888	0	-	-	-	BE	BG	-	-	.181	.122	2.8	3.6	16.0	4.3	4.8	5.7	6.3	6.9	8.2	27	52
	460.968	0	-	-	-	-	BG	-	-	.232	.162	4.3	5.7	25	6.7	7.5	8.8	9.9	10.8	12.7	27	52
	461.048	-	0	-	-	-	-	ΒK	-	.299	.193	6.9	9.1	40	10.7	12.0	14.1	15.9	17.3	20	27	52
				-				_				-	-	-							-	

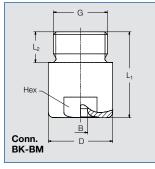
 Example
 Type
 + Material no. +
 Conn. =
 Ordering no.


 for ordering:
 460.728 + 5E
 +
 BE
 =
 460.728.5E.BE

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Excellent uniform full cone distribution and thorough atomization. Non-clogging nozzle design. Stable spray angle and particularly even liquid distribution.


Applications:


Cleaning and washing processes, surface spraying, container cleaning, foam precipitation, degassing of liquids.

Series 490/491 represents a new generation within the axial-flow full cone nozzles product group. These nozzles were developed using state-of-the-art design and simulation methods (CFD).

Conn.	G	Dimens	ions (in.)] L ₂	D	Hex	Weight Brass
BA	1/8 NPT	0.71	0.26	0.39	7/16	.03
BC	1/4 NPT	0.87	0.39	0.51	9/16	.04
BE	3/8 NPT	0.96	0.39	0.63	11/16	.07
BE	3/8 NPT	1.18	0.39	0.63	11/16	.11
BG	1/2 NPT	1.28	0.51	0.83	14/16	.13
BG	1/2 NPT	1.71	0.51	0.83	14/16	.19
BK	3/4 NPT	1.65	0.59	1.26	1-1/16	.42
BK	3/4 NPT	1.97	0.59	1.26	1-1/16	.44
BM	1 NPT	2.20	0.67	1.57	1-7/16	.77

Subject to technical modification.

In a critical installation situation, please ask for the exact dimensions.

			Ord	dering	ı no.					ć						ow Rati is Per N						/ Diam. (in.)
$ \downarrow $	Туре	Mat	. no.			Conn	ection			diam.	ige			liters			,					0 psi
Spray angle		316 L	Brass			Male	NPT			Orifice	Free Passage	10	20	per minute 2	30	40	60	80	100	150		7
ang		1Ÿ	30	¹ /8"	¹ /4"	³ /8"	¹ /2"	³ /4"	1"	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	psi	psi	H=8"	H=20"
60 °	490. 404	0	0	BA	-	-	-	-	-	.045	.045	.17	.23	1.00	.27	.30	.35	.40	.43	0.51	9	22
	490. 444	0	-	BA	-	-	-	-	-	.049	.049	.22	.29	1.25	.33	.38	.44	.49	.54	0.64	9	22
	490. 524	0	0	BA	-	-	-	-	-	.063	.063	.35	.46	2.00	.54	.60	.71	.79	.87	1.02	9	22
	490. 644	0	0	-	BC	BE	-	-	-	.091	.091	.69	.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	9	22
	490. 724	0	0	-	BC	BE	-	-	-	.112	.110	1.09	1.43	6.30	1.69	1.89	2.23	2.50	2.73	3.21	9	22
	490.804	0	0	-	-	BE	-	-	-	.146	.146	1.72	2.28	10.00	2.68	3.00	3.53	3.97	4.34	5.10	9	22
	490.844	0	0	-	-	-	BG	-	-	.159	.159	2.16	2.85	12.50	3.35	3.76	4.42	4.96	5.42	6.37	9	22
	490.884	0	0	-	-	-	BG	-	-	.183	.183	2.76	3.64 5.69	16.00	4.28	4.81	5.65	6.34	6.94	8.16	9	22 22
	490. 964 491. 084	0	0	-	-	-	-	BK -	- BM	.228 .321	.228 .321	4.31 8.63	5.69 11.38	25.00 50.00	6.70 13.39	7.51 15.02	8.83 17.67	9.91 19.82	10.84 21.67	12.74 25.49	9 9	22
000	491.004	0	0	- BA	-	-	-	-	DIVI	.047	.047	.17	.23	1.00	.27	.30	.35	.40	.43	.51	15	34
90°	490.400	0	0	BA	-	-	-	-	-	.047	.047	.17	.23	1.60	.27	.30	.55	.40	.43	.82	15	34
	490. 526	0	0	BA	<u> </u>	-	-	_	<u> </u>	.057	.067	.20	.30	2.00	.43	.60	.71	.00	.03	1.02	15	34
	490, 606	0	0	BA	-	_	_	_	_	.007	.007	.53	.40	3.15	.84	.00	1.11	1.25	1.37	1.61	15	34
	490, 646	ŏ	Ö		вс	_	-	_	_	.094	.094	.69	.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	15	38
	490, 726	0	0	-	BC	BE	-	_	_	.126	.110	1.09	1.43	6.30	1.69	1.89	2.23	2.50	2.73	3.21	15	38
	490.806	0	0	-	-	BE	-	-	-	.154	.154	1.72	2.28	10.00	2.68	3.00	3.53	3.97	4.34	5.10	15	38
	490. 846	0	0	-	-	BE	-	-	-	.183	.157	2.16	2.85	12.50	3.35	3.76	4.42	4.96	5.42	6.37	15	38
	490. 886	0	0	-	-	-	BG	-	-	.215	.177	2.76	3.64	16.00	4.28	4.81	5.65	6.34	6.94	8.16	15	38
	490. 926	0	0	-	-	-	BG	-	-	.232	.177	3.45	4.56	20.00	5.36	6.01	7.07	7.93	8.67	10.20	15	38
	490. 966	0	0	-	-	-	BG	-	-	.258	.191	4.31	5.69	25.00	6.70	7.51	8.83	9.91	10.84	12.74	15	38
	491.086	0	0	-	-				.285	8.63	11.38	50.00	13.39	15.02	17.67	19.82	21.67	25.49	15	38		

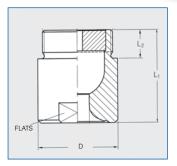
Continued on next page.

UC

	Ä	
Conserved and		
Terrer		

		dering	no.					Ę						ow Rate is Per M						/ Diam. (in.)		
$ \downarrow $	Туре	Mat	. no.			Conn	ection			diam.	ge			liters	Ì		,					i0 psi
≥o		۲ ۲	Brass			Male	NPT			Orifice	Free Passage			per minute								71
Spray angle		916 1 X	ай 30	1/8"	¹ /4"	³ /8"	1/2"	³ /4"	1"	(in.)	(in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	150 psi	H=8"	H=20"
120°	490. 368	0	0	BA	-	-	-	-	-	.033	.026	.11	.14	.63	.17	.19	.22	.25	.27	.32	27	48
	490. 408	0	0	BA	-	-	-	-	-	.047	.047	.17	.23	1.00	.27	.30	.35	.40	.43	.51	27	48
	490. 488	0	0	BA	-	-	-	-	-	.057	.057	.28	.36	1.60	.43	.48	.57	.63	.69	.82	27	48
	490. 568	0	0	BA	-	075				.075	.075	.43	.57	2.50	.67	.75	.88	.99	1.08	1.27	27	48
	490. 648	0	0	-	BC	BE	-	-	-	.094	.094	.69	.91	4.00	1.07	1.20	1.41	1.59	1.73	2.04	27	52
	490. 728	0	0	-	BC	BE	-	-	-	.126	.110	1.09	1.43	6.30	1.69	1.89	2.23	2.50	2.73	3.21	27	52
	490. 748	0	-	-	-	BE	-	-	-	.126	.126	1.23	1.62	7.10	1.90	2.13	2.51	2.82	3.08	3.62	27	52
	490.808	0	0	-	-	BE	-	-	-	.154	.154	1.72	2.28	10.00	2.68	3.00	3.53	3.97	4.34	5.10	27	52
	490. 848	0	0	-	-	BE	-	-	-	.185	.157	2.16	2.85	12.50	3.35	3.76	4.42	4.96	5.42	6.37	27	52
	490. 928	0	0	-	-	-	BG	-	-	.228	.187	3.45	4.56	20.00	5.36	6.01	7.07	7.93	8.67	10.20	27	52
	490. 968	0	0	-	-	-	BG	BK	-	.262	.191	4.31	5.69	25.00	6.70	7.51	8.83	9.91	10.84	12.74	27	52
	491.048	0	0	-	-	-	-	BK	-	.362	.230	6.90	9.11	40.00	10.71	12.02	14.14	15.86	17.34	20.39	27	52
	491. 148	0	-	-	-	-	-	-	BM	.449	.301	12.25	16.17	71.00	19.01	21.33	25.09	28.15	30.78	36.20	27	52

Example	Туре	+	Material no. +	Conn.	=	Ordering no.
for ordering:	490. 368	+	1Y +	BA	=	490. 368. 1Y. BA


Uniform spray pattern. Large free passage crosssections due to optimized x-style swirl insert.

Applications:

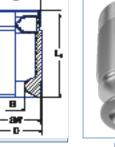
- Surface spraying
- Spraying over packings
- Cleaning and washing processes
- Chemical process
 engineering
- Cooling of gaseous fluids and solids
- Water treatment

Full cone

Dimensions (in.)													
(Male NPT)	L1	L2	D	Flats									
1-1/4	1.97	.75	1.93	1-5/8									
1-1/2	2.36	.75	2.32	2									
2	3.07	.94	2.68	2-3/8									

¢		Ordering no.				diam.	age				Flow Rate				Spray D	
	Туре	Material no.	Co	onnectio	n		pass			(Gali	(Gallons Per Minute)					30 psi
Spray angle		L SS	Ν	Male NPT		rifice	e b				liters per minute					
ang		1916L	1 ¹ /4"	1 ¹ /2"	2"	ō (in.)	ட் (in.)	5 psi	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	H=20"	 H=40"
90°	405. 206	0	BP	-	-	.473	.197	13	17	23	100	27	30	35	31	57
	405. 286	0	-	BR	-	.599	.244	21	28	36	160	43	48	57	31	61
	405. 326	0	-	-	BV	.678	.303	26	35	46	200	54	60	71	33	63
	405.366	0	-	-	BV	.768	.343	33	43	57	250	67	75	88	33	63
	405. 406	0	-	-	BV	.867	.374	41	54	72	315	85	95	111	33	63
120°	405. 208	0	BP	-	-	.500	.197	13	17	23	100	27	30	35	57	102
	405. 288	0	-	BR	-	.630	.260	21	28	36	160	43	48	57	59	106
	405. 328	0	-	-	BV	.701	.311	26	35	46	200	54	60	71	59	110
	405. 368	0	-	-	BV	.792	.347	33	43	57	250	67	75	88	59	110
	405. 408	0	-	-	BV	.883	.359	41	54	72	315	85	95	111	59	110

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	405. 204	+	1Y -	+	BP	=	405. 204. 1Y. BP



Particularly insensitive to clogging thanks to very large free cross sections. Stable spray angle. Uniform spray pattern

Applications:

- Gas washing
- Spraying over packings
- Dust control
- Absorption
- Distillation

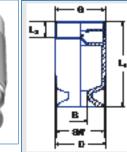
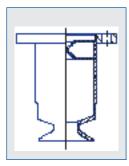



Figure 2

Other materials and flange versions are available on request

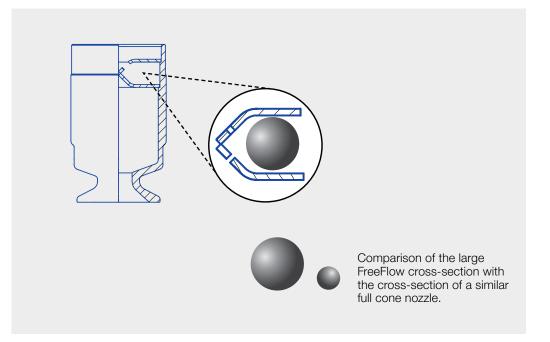
Sprov					Dime	nsions [in]		Weight
Spray Angle	Туре	Code	Figure	G NPT Male	L ₁	L ₂	D	Flats	(lbs)
	410.000/	BR	3	1 1/2	5.20	.87	2.52	2.36	3.31
	419.3XX	BV	1	2	4.49	.94	2.52	2.36	2.65
	419.4XX	BV	3	2	6.42	1.06	3.15	2.95	4.41
	419.4	BY	2	2 1/2	5.28	.94	3.15	2.95	3.75
		BV	3	2	7.83	1.06	4.02	3.74	8.16
90°	419.51X	BY	3	2 1/2	7.95	1.18	4.02	3.74	8.38
+	419.54X	MA	3	3	8.07	1.26	4.02	3.74	11.46
120°		MC	2	3 1/2	6.65	1.06	4.02	3.74	7.05
		BY	3	2 1/2	9.09	1.18	4.53	4.13	11.46
	419.57X	MA	3	3	9.17	1.42	4.53	4.13	11.46
		ME	2	4	7.64	36	4.53	4.13	9.70
	410 GVV	MA	3	3	9.92	30	4.41	4.53	11.90
	419.6XX	MC	3	3 1/2	10.00	32	4.41	4.53	12.13

.

Figure 1 e 5

Figure 3

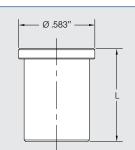
Full cone



Spray				Orde	ring no					B Ø	E Ø							ameter D	
angle*		Mat	Nr.			Сс	de			[in]	[in]			Flow Rate			[in] at p=15 psi		
A	Туре	1Y	2P				0						(Gallons Per Minute)					4	
	_	316L SS	904 L	1 1/2 Male NPT	2 Male NPT	2 1/2 NPT male	3 NPT male	3 1/2 NPT male	4 NPT male			5 psi	10 psi	15 psi	30 psi	75 psi	H = 20 in	D = 40 in	
90°	419.366	0	0	BR	BV	-	-	-	-	.70	.69	33	43	51	67	97	39	79	
	419.396	0	0	BR	BV	-	-	-	-	.81	.69	39	52	61	80	116	39	79	
	419.446	0	0	-	BV	BY	-	-	-	.91	.81	52	69	81	107	155	39	79	
	419.486	0	0	-	BV	BY	-	-	-	1.10	.81	65	86	101	134	193	39	79	
	419.516	0	0	-	BV	BY	MA	мс	-	1.07	.95	78	104	122	161	232	39	79	
	419.546	0	0	-	BV	BY	MA	мс	-	1.30	.95	93	124	144	190	274	39	79	
	419.576	0	0	-	-	BY	MA	-	ME	1.34	1.07	111	147	172	228	328	39	79	
	419.606	0	0	-	-	-	MA	мс	-	1.48	1.19	131	172	203	268	386	39	79	
	419.626	0	0	-	-	-	MA	мс	-	1.69	1.19	163	216	254	335	483	39	79	
120°	419.368	0	0	BR	BV	-	-	-	-	.81	.69	33	43	51	67	97	67	114	
	419.398	0	0	BR	BV	-	-	-	-	.93	.69	39	52	61	80	116	67	114	
	419.448	0	0	-	BV	BY	-	-	-	.96	.81	52	69	81	107	155	67	114	
	419.488	0	0	-	BV	BY	-	-	-	1.16	.81	65	86	101	134	193	67	114	
	419.518	0	0	-	BV	BY	MA	МС	-	1.07	.95	78	104	122	161	232	67	114	
	419.548	0	0	-	BV	BY	MA	мс	-	1.34	.95	93	124	144	190	274	67	114	
	419.578	0	0	-	-	BY	MA	-	ME	1.34	1.13	111	147	172	228	328	67	114	
	419.608	0	0	-	-	-	MA	МС	-	1.50	1.27	131	172	203	268	386	67	114	
	419.628	0	0	-	-	-	MA	мс	-	1.71	1.27	163	216	254	335	483	67	114	

 $\mathsf{B}=\mathsf{Orifice}\ \mathsf{diameter}\-\mathcal{O}\cdot\mathsf{E}=\mathsf{Free}\ \mathsf{passage}\cdot{}^*$ Spray angle at 15 psi

Example	Туре	+	Material-Nr. +	۲	Code	=	Ordering no.
for ordering:	419.366	+	1Y		BR	=	419.366.1Y.BR



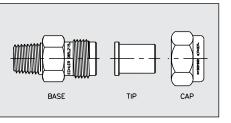
Excellent uniform full cone distribution and thorough atomization. Spray angles are consistent over the full capacity range.

Applications:

- Washing and cleaning
- Mist eliminator washing
- Chemical reactors
- Surface spraying

Dimensio	ons (in.)	
Capacity	Length (L)	Wt. brass (lb.)
468.36X- 468.60X	.71	.04
468.64X- 468.84X	.97	.04

J	Orderi	<u> </u>			diam.	ssage					low Rate					L (in.)	Spray [Diam. D 30 psi
Spray angle	Туре	316 SS	aterial	no.	Orifice di	Free pass	10	20	liters per minute 2.0	30	30 40 60 80 100 150					(111.)		
a N		17 ¹⁾	30	5E	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	psi	psi		H=8"	H=20"
60°	468. 604 468. 644	-	0	-	.081 .095	.055 .075	.54 .69	.72 .91	3.2 4.0	.84 1.1	.95 1.2	1.1 1.4	1.2 1.6	1.4 1.7	1.6 2.0	.71 .97	9 9	22 22
	468. 684 468. 724	-	0	-	.102	.079	.86	1.1	5.0 6.3	1.3 1.7	1.5 1.9	1.8 2.2	2.0 2.5	2.2	2.5 3.2	.97 .97	9	22 22
90°	468. 526 468. 846	0 -	0	•	.065	.051 .126	.35 2.2	.46 2.9	2.0 12.5	.54 3.4	.60 3.8	.71 4.4	.79 5.0	.87 5.4	1.0 6.4	.71 .97	15 15	34 34
120°	468. 368 468. 408	-	0	-	.037 .047	.028 .033	.11 .17	.14 .23	.60 1.0	.17 .27	.19 .30	.22 .35	.25 .40	.27 .43	.32 .51	.71 .71	27 27	61 61
	468.488	0	0	-	.047	.033	.17 .28	.23	1.6	.27 .43	.30 .48	.35 .57	.40	.43	.82	.71	27	61
	468. 528	0	0	-	.065	.047	.35	.46	2.0	.54	.60	.71	.79	.87	1.0	.71	27	61


Bases and Caps for Mounting

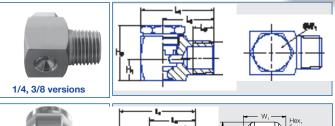
Inlet NPT Male	Outlet Male	Part No.	
1/4" 3/8"	11/16 x 16 11/16 x 16	065. 215. XX. 10 065. 211. XX. 10	Standard Materials: 17 316 SS
1/4" 3/8"	3/8 BSPP 3/8 BSPP	065. 215. XX. 11 065. 215. XX. 12	30 Brass
Caps			
To fit 11/16x1 To fit 3/8 BSF		069. 000. XX. 00 065. 200. XX. 00	

Example	Туре	+	Material no. =	Ordering no.
for ordering:	468. 526	+	17 =	468. 526. 17

1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

Full cone

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.



Tangential design has no internal swirl device for maximum clog resistance. Spray distribution and angle are stable over a wide range of pressures.

Applications:

- Cleaning and washing processes
- Mist eliminator washing
- Scrubber towers
- · Chemical reactors
- Chemical injection

Dimensions [in]													
L1	L ₂	L ₃	H ₁	H ₂	W1	W ₂	Hex ₁	Hex ₂	Weight (lb.)				
1.1	.79	.38	.31	.83	.61	.63	.43	-	.097				
1.42	.98	.4	.43	1.05	.91	.87	.75	-	.222				
2.2	1.32	.52	.79	1.57	1.26	1.89	1.06	0.75	.816				
2.58	1.52	.57	.93	2.24	1.5	2.48	1.42	1.06	1.83				
3.35	1.91	.66	1.07	2.6	2.17	3.07	1.61	1.42	3.49				
	1.42 2.2 2.58	1.1 .79 1.42 .98 2.2 1.32 2.58 1.52	L1 L2 L3 1.11 .79 .38 1.42 .98 .4 2.2 1.32 .52 2.58 1.52 .57	L1 L2 L3 H1 1.1 .79 .38 .31 1.42 .98 .4 .43 2.2 1.32 .52 .79 2.58 1.52 .57 .93	L1 L2 L3 H1 H2 1.1 .79 .38 .31 .83 1.42 .98 .4 .43 1.05 2.2 1.32 .52 .79 1.57 2.58 1.52 .57 .93 2.24	L1 L2 L3 H1 H2 W1 1.1 .79 .38 .31 .83 .61 1.42 .98 .4 .43 1.05 .91 2.2 1.32 .52 .79 1.57 1.26 2.58 1.52 .57 .93 2.24 1.5	L1 L2 L3 H1 H2 W1 W2 1.1 .79 .38 .31 .83 .61 .63 1.42 .98 .4 .43 1.05 .91 .87 2.2 1.32 .52 .79 1.57 1.26 1.89 2.58 1.52 .57 .93 2.24 1.5 2.48	L1 L2 L3 H1 H2 W1 W2 Hex1 1.1 .79 .38 .31 .83 .61 .63 .43 1.42 .98 .4 .43 1.05 .91 .87 .75 2.2 1.32 .52 .79 1.57 1.26 1.89 1.06 2.58 1.52 .57 .93 2.24 1.5 2.48 1.42	L1 L2 L3 H1 H2 W1 W2 Hex1 Hex2 1.1 .79 .38 .31 .83 .61 .63 .43 . 1.42 .98 .4 .43 1.05 .91 .87 .75 . 2.2 1.32 .52 .79 1.57 1.26 1.89 1.06 0.75 2.58 1.52 .57 .93 2.24 1.5 2.48 1.42 1.06				

¢	Ordering no.									diam.	age	Flow Rate (Gallons Per Minute)							Spray Diam. D (in.) @ 40 psi			
	Туре	Mat					Conn		١			e dia	passage			liters per		,			!(III.) @ 共	40 psi
Spray angle		AISI 316L	Brass				Male	NPT				Orifice (Free	10	20	minúte 2	40	60	80	100		<u>}_</u>
an		1Y	30	1/4"	³ /8"	¹ /2 ["]	³ /4"	1"	1 1/4"	1 1/2"	2"	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	H=8"	H=20"
60°	422.644	0	0	-	BE	-	-	-	-	-	-	.118	.118	.62	.88	4.0	1.2	1.5	1.8	2.0	9	20
90°	422.406	0	0	BC	-	-	-	-	-	-	-	.059	.057	.16	.22	1.0	.31	.38	.44	.49	15	34
	422. 486	0	-	BC	-	-	-	-	-	-	-	.075	.071	.25	.35	1.6	.50	.61	.70	.78	15	34
	422. 566	0	0	BC	-	-	-	-	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	15	34
	422.606	0	0	-	BE	-	-	-	-	-	-	.102	.099	.49	.69	3.2	.98	1.2	1.4	1.6	15	34
	422.646	0	0	-	BE	-	-	-	-	-	-	.118	.114	.62	.88	4.0	1.2	1.5	1.8	2.0	15	38
	422.766	0	-	-	BE	-	-	-	-	-	-	.164	.162	1.2	1.8	8.0	2.5	3.0	3.5	3.9	15	38
	422.886	0	0	-	BE	-	-	-	-	-	-	.230	.230	2.5	3.5	16.0	5.0	6.1	7.0	7.9	15	38
	422.966	0	-	-	-	BG	-	-	-	-	-	.315	.315	3.9	5.5	25	7.8	9.5	11.0	12.3	15	38
	423.006	0	-	-	-	BG	-	-	-	-	-	.343	.343	4.8	6.8	31	9.6	11.8	13.6	15.2	15	38
	423. 046 423. 086	0	-	-	-	-	BK BK	-	-	-	-	.426	.402 .433	6.2 7.8	8.8 11.0	40 50	12 15.5	15 19.0	18 22	20 25	15 15	38 38
	423.086	0	-	-	-	-	BK	-	-	-	-	.449 .500	.433	7.8 9.8	13.8	63	19.5	19.0 24	22	31	15	38
	423. 126		-	-	-	-	DN	- BM	-	-	-	.500	.465	9.6 11.0	15.6	71	22	24 27	20 31	35	15	38
	423. 146	0	1	-	-	-	-	BM	-	-	-	.670	.630	15.5	21.9	100	31	38	44	49	15	38
	423.200	0	-		-	-	-		- BP	-	-	.748	.030	25.0	35.0	160	50	61	71	79	15	38
	423.366	0	-	-	-	_	-	_	-	BR	-	.875		38.0	54.0	246	76	93	107	120	15	38
	423, 406	ŏ	_	_	_	_	_	_	_	-	BV	.070	_	49.0	69.0	315	98	120	139	155	15	38
	423.446	0	-	_	_	_	_	_	-	-	BV	-	-	62.0	88.0	400	124	152	175	196	27	38
120°	422, 568	0	0	BC	-	-	-	-	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	27	48
	422, 728	0	0		BE	-	-	-	-	-	-	.146	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	27	63
	422.808	0	-	-	BE	-	-	-	-	-	-	.183	.181	1.6	2.2	10.0	3.1	3.8	4.4	4.9	27	63
	422.848	0	0	-	BE	-	-	-	-	-	-	.205	.201	1.9	2.7	12.5	3.9	4.8	5.5	6.1	27	63
	422.888	0	0	-	BE	-	-	-	-	-	-	.229	.225	2.5	3.5	16.0	5.0	6.1	7.0	7.9	27	63
	422. 928	0	-	-	-	BG	-	-	-	-	-	.288	.288	3.1	4.4	20	6.2	7.6	8.8	9.8	27	63
	422.968	0	0	-	-	BG	-	-	-	-	-	.315	.315	3.9	5.5	25	7.8	9.5	11.0	12.3	27	63
	423.008	0	-	-	-	BG	-	-	-	-	-	.343	.343	4.8	6.8	31	9.6	11.8	13.6	15.2	27	63
	423. 128	0	-	-	-	-	BK	-	-	-	-	.500	.485	9.8	13.8	63	19.5	24	28	31	27	63
	423. 208	0	-	-	-	-	-	BM	-	-	-	.670	.630	15.5	21.9	100	31	38	44	49	27	63

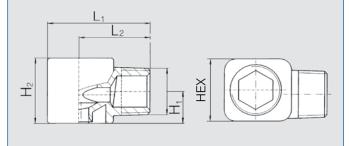
Example	Туре	+	Material no.	+	Conn. =	Ordering no.
for ordering:	422. 846	+	1Y	+	BE =	422. 846. 1Y. BE

Different metallurgies may be available upon request.

83

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Conversion formula for the above series: V www.LesherusAccombol definitions.)



Vaneless tangential design combined with **PVDF** construction offers an excellent nozzle for critical environmental and chemical processing uses.

Applications:

- Mist eliminator washing
- Chemical reactors
- Scrubbers

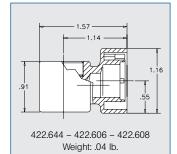
	Dimensions (in.)												
Inlet (Male NPT)	L1	L2	H1	H2	Hex	Wt. (Ib.)							
1/4	1.10	.79	.31	.63	5/8	.02							
3/8	1.42	.98	.44	.91	7/8	.04							
1/2	1.95	1.32	.76	1.50	1-5/16	.09							
3/4	2.30	1.52	.96	1.97	1-5/8	.11							

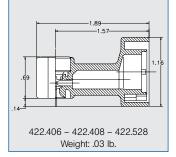
¢		Ord	lering no).			Ë	passage				Flow Ra					iameter D	
$ $ \checkmark $ $	Туре	Mat. no.		Conn	ection		dia	Jass			liters per minute		(initiate)			(in.) @ 40 psi		
Spray angle		PVDF	Male			BSPT	Orifice diam.	Free p	10	20	2 40 60			80	100			
ά		5E	¹ /4"	³ /8"	¹ /2"	³ /4"	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	H=8"	H=20"	
60°	422. 724	0	-	BE	-	-	.142	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	9	20	
90°	422.406	0	BC	-	-	-	.059	.057	.16	.22	1.0	.31	.38	.44	.49	15	34	
	422.486	0	BC	-	-	-	.075	.071	.25	.35	1.6	.50	.61	.70	.78	15	34	
	422.566	0	BC	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	15	34	
	422.606	0	-	BE	-	-	.102	.099	.49	.69	3.2	.98	1.2	1.4	1.6	15	34	
	422.646	0	-	BE	-	-	.118	.114	.62	.88	4.0	1.2	1.5	1.8	2.0	15	38	
	422. 726	0	-	BE	-	-	.146	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	15	38	
	422.806	0	-	BE	-	-	.183	.181	1.6	2.2	10.0	3.1	3.8	4.4	4.9	15	38	
	422.846	0	-	BE	-	-	.205	.201	1.9	2.7	12.5	3.9	4.8	5.5	6.1	15	38	
	422.886	0	-	BE	-	-	.229	.225	2.5	3.5	16.0	5.0	6.1	7.0	7.9	15	38	
	422.926	0	-	-	CG CG	-	.288	.288	3.1	4.4	20	6.2	7.6	8.8	9.8	15	38	
	422.966 423.006	0	-	-	CG	-	.315 .343	.315 .343	3.9 4.8	5.5 6.8	25 31	7.8 9.6	9.5 11.8	11.0 13.6	12.3 15.2	15 15	38 38	
	423.006	0	-	-	-	- CK	.343	.343	4.0 9.8	13.8	63	9.6 19.5	24	28	31	15	38	
120°	422, 408	0	BC	-	-	-	.059	.057	.16	.22	1.0	.31	.38	.44	.49	27	63	
	422, 448	Õ	BC	_	_	-	.065	.063	.19	.26	1.2	.37	.46	.53	.59	27	63	
	422, 488	0	BC	-	-	-	.075	.071	.25	.35	1.6	.50	.61	.70	.78	27	63	
	422. 568	0	BC	-	-	-	.091	.087	.39	.55	2.5	.78	.95	1.1	1.2	27	63	
	422.728	0	-	BE	-	-	.146	.142	.98	1.4	6.3	2.0	2.4	2.8	3.1	27	63	
	422.888	0	-	BE	-	-	.229	.225	2.5	3.5	16.0	5.0	6.1	7.0	7.9	27	63	
	423.008	0	-	-	CG	-	.343	.343	4.8	6.8	31	9.6	11.8	13.6	15.2	27	63	
	423. 128	0	-	-	-	СК	.500	.485	9.8	13.8	63	19.5	24	28	31	27	63	

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	422.888	+	5E	+	BE	=	422. 888. 5E. BE

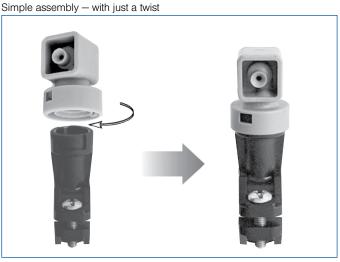
A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Full cone nozzles Tangential-flow TWISTLOC quick release mount Series 422


Bayonet PVDF nozzles mount by hand with a quick twist. Lechler's vaneless full cone design paired with a quick-disconnect offers an unbeatable combination where nozzles may need to be changed, cleaned, or inspected quickly.


Applications:

- Mist eliminator washing
- Critical cleaning operations
- Chemical reactors
- Scrubbers

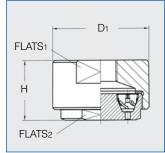


/ Diameter	D
) @ 40 psi	
	20"

A		ering no			diam.	sage	Flow Rate (Gallons Per Minute)							Spray Diameter D (in.) @ 40 psi		
Spray angle	Туре	Mat.	no. ^{oud/lod} 53	Conn. Bayonet	Orifice di		10 psi	20 psi	liters per minute 2 bar	40 psi	60 psi	80 psi	100 psi	1 .		
60°	422, 644	-	0	КВ	.114	.114	.62	.88	4.0	1.2	1.5	1.8	2.0	9	20	
90°	422.406	0	-	KB KB	.059 .102	.057	.16 .49	.22	1.0 3.2	.31 .98	.38 1.2	.44	.49 1.6	15 15	34 34	
120°	422. 408 422. 528 422. 608	0 0 0		KB KB KB	.059 .083 .102	.057 .079 .099	.16 .32 .49	.22 .44 .69	1.0 2.0 3.2	.31 .62 .98	.38 .76 1.2	.44 .88 1.4	.49 .98 1.6	27 27 27	48 48 63	

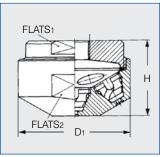
Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	422. 608	+	5E	+	KB	=	422. 608. 5E. KB

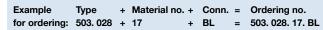
A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

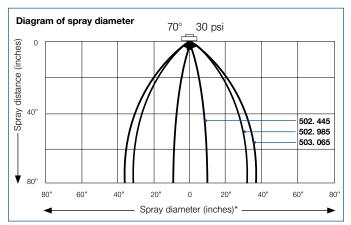


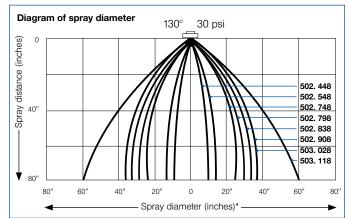
Each unit uses seven individual hollow cone orifices to generate small droplets. Sprays overlap into one wide angle full cone pattern.

Applications:


- Gas cooling
- Steam de-superheating
- Chemical reactors

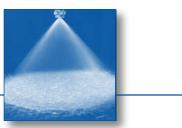

	70° Version											
Dimensions (in.)												
1/2" 3/4"												
FLATS1	1.8	2.6										
FLATS2	1.5	2.2										
Н	1.0	1.8										
D	2.0	3.0										
Weight (Brass)	.55 lb.	1.92 lb.										





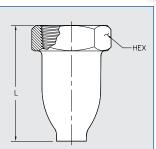
130° Version Dimensions (in.)											
	1/2"	., 3/4"									
FLATS1	1.1	2.0									
FLATS2	1.4	2.2									
Н	1.1	2.1									
D	1.6	2.4									
Weight											
(Brass)	.33 lb.	.90 lb.									

X		Orderin	g no.		Ė	ige					v Rate	、 、				Diam. D	
2	Туре	Materi	al no.	Connection	diam.	passage			I	Gallons	Per Minute	e)			(in.) @ 30 psi		
<u>≥</u> e		SS	s	Female	Orifice				liters per minute						<u> </u>	<u> </u>	
Spray angle		9 ₁₆ 17	Brass 30	NPT ¹ /2" ³ /4"	it.	ee Le (in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	H=40"	 H=80"	
70°	502.445	-	0	BH -	.035	.020	.19	.27	1.3	.35	.39	.48	.55	.61	16	16	
	502.985	0	-	- BL	.129	.079	4.3	6.1	28	7.5	8.7	10.6	12.3	13.7	47	59	
	503.065	0	-	- BL	.193	.079	7.0	9.9	45	12.1	14.0	17.1	19.8	22	47	70	
	503. 115	0	0	- BL	.236	.079	9.2	13.1	60	16.1	18.7	23	26	29	51	78	
130°	502.448	0	0	BH BL	.035	.020	.19	.27	1.3	.35	.39	.48	.55	.61	20	20	
	502.548	0	0	BH BL	.071	.020	.35	.49	2.2	.59	.70	.86	.99	1.1	27	27	
	502.588	0	0	- BL	.039	.039	1.6	2.3	2.8	.87	.87	1.1	1.2	1.4	32	35	
	502.748	0	0	- BL	.075	.079	1.2	1.6	7.1	1.9	2.2	2.7	3.1	3.5	43	47	
	502.798	0	-	- BL	.114	.079	1.5	2.1	9.5	2.6	3.0	3.6	4.2	4.7	47	51	
	502.838	0	0	- BL	.118	.079	1.8	2.6	11.8	3.2	3.7	4.5	5.2	5.8	55	63	
	502.908	0	0	- BL	.157	.079	2.8	3.9	18.0	4.8	5.6	6.8	7.9	8.8	59	70	
	503.028	0	0	- BL	.165	.079	5.5	7.7	36	9.7	11.0	13.5	15.6	17.4	63	70	
	503. 118	0	0	- BL	.256	.079	9.2	13.1	60	16.1	18.7	23	26	29	79	118	



* Spray diameter coordinates represent distance from zero (0) coordinate.For each curve, add both coordinate values to obtain spray diameter.

Anversion formula for the above series: V₂₋₈



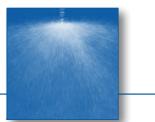
Turbine-style vane for uniform atomization and distribution.

Applications:

- Surface spraying
- Quench cooling
- Fire suppression
- Chemical processing

	Dimensions (in.)											
Inlet (Female NPT)	Wt. (Ib.)											
1-1/2	4.31	2-3/16	1.8									
2	5.45	2-3/4	2.4									
2-1/2	6.00	3-1/4	4.18									
3	6.89	3-7/8	6.0									

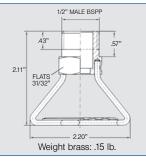
	Ordering	g no.			Orifice diam.				Flow (Gallons P					Spray Angle
Туре	Mat.no.		Conr	nection	đ				liters per					in degrees
	SS		Foms	le NPT	ifice				minute					@ 40 psi
	316					5	10	20	2	40	60	80	100	- ·
	17	1 ¹ /2	2" 2"	2 ¹ /2" 3"	(in.)	psi	psi	psi	bar	psi	psi	psi	psi	(*=15 psi
STANDARD ANGLE	Ξ													
459. 244	0	BS	3 -		.500	14	20	27	124	38	47	54	60	62
459. 284	0	BS	-		.625	18	25	36	165	50	62	71	79	62
459.355	0	BS	3 -		.687	26	37	52	233	72	86	100	112	70
459.356	0	BS	-		.687	26	37	52	233	72	86	100	112	84
459. 343	0	-	BW		.500	25	35	48	222	68	82	94	105	43
459. 365	0	-	BW		.656	28	39	53	242	72	86	98	110	*80
459. 415	0	-	BW		.796	38	53	74	339	105	125	144	160	66
459. 455	0	-	BW		.906	48	68	95	434	132	160	183	205	68
459. 475	0	-	-	BZ -	.910	54	75	104	475	143	172	200	221	83
459. 515	0	-	-	BZ -	1.06	68	94	132	603	185	225	260	290	67
459. 584	0	-	-	- MB	1.31	103	144	200	925	285	345	400	440	57
WIDE ANGLE														
459. 238	0	BS	} -		.562	15	20	27	124	37	45	51	56	120
459.266	0	BS	- 6		.500	14	19	26	117	35	42	48	53	98
459. 286	0	BS	- 6		.625	18	25	36	165	50	62	71	79	94
459. 288	0	BS	-		.625	19	26	36	162	49	58	66	73	120
459. 348	0	BS	-		.781	26	36	49	226	69	83	95	105	120
459. 378	0	-	BW		.781	33	45	61	273	82	98	110	122	118
459. 386	0	-	BW		.796	37	50	68	311	92	111	129	141	*99
459.408	0	-	BW		.937	40	55	74	332	100	118	135	147	118
459. 488	0	-	-	BZ -	1.03	64	86	117	521	157	187	212	232	119
459. 496	0	-	-	BZ -	0.98	63	87	119	543	165	200	233	259	*86
459. 575	0	-	-	- MB	1.31	110	150	205	938	275	330	380	421	*90
459. 608	0	-	-	- MB	1.43	146	200	274	1255	372	450	520	590	120


This product line is also available in larger capacities with inlets up to 6" in size. Please contact Lechler if you have an application requiring a larger size.

Example	Туре	+	Material no.	+	Conn. =	Ordering no.
for ordering:	459. 455	+	17	+	BW =	459. 455. 17. BW

पद्ध

Conversion formula for the above series: $V_2 = V_1 \star$ (See page 12 for symbol definitions.) www.LechlerUSA.com 87



Full cone spray has no swirl insert for greater clog resistance.

Applications:

- Fire fighting
- Broadcast spraying
- Wide area spraying
- Tank cleaning

¢		ering no.		diam.					w Rate Per Minute)				Spray Dia (ft.) @	
Spray angle	Туре	Mater	Sa	Drifice d		liters per minute 40 60 80 100 150								
arg	Connection: ¹ /2" Male BSPP		ä 30	(in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	150 psi	H=40"	H=120"
180°	524.809	0	0	.158	1.6	2.2	10	3.1	3.8	4.4	4.9	6.0	18	21
	525.049	0	0	.315	6.2	8.8	40	12.4	15.2	17.6	19.6	24	33	43
	525. 109	-	0	.366	8.8	12.5	57	17.7	22	25	28	34	33	44
	525. 169	-	0	.429	12.6	17.8	81	25	31	36	40	49	35	44
	525. 229	-	0	.481	17.4	25	112	35	43	49	55	67	22	34
	525. 269	0	0	.485	22	31	140	43	53	61	69	84	17	33

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	525. 049	+	30	=	525. 049. 30

www.LechlerUSA.com

ETHER

Flat fan nozzles

Belt cleaning Coating Steam cleaning Degreasing High pressure cleaning Gravel washing Cooling Surface treatment Phosphating Rain curtains Foam control Foam spraying Lubrication Filter cleaning Spray cleaning Washing processes and many others...

90

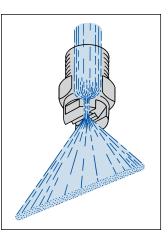
1 m

Flat fans are commonly-used nozzles, appropriate for many spray applications. When higher impact is required, powerful jets can be generated for spray angles up to 60°. Nozzles with low flow rates are suitable for humidifying. The flat fan pattern itself is most conducive for spraving items on a moving conveyor. The flow geometry of the nozzle allows the production of accurate, compact jets, available with different distribution patterns.

Distribution

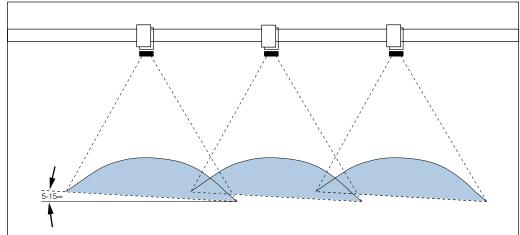
Flat fan designs fall into two categories: Parabolic and Even. These terms describe the distribution of liquid across the width of the spray coverage.

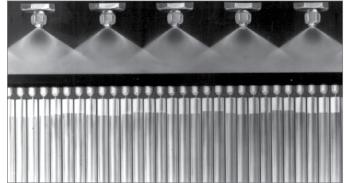
Parabolic

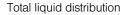

Most flat fans are this type. These designs have heavier flow in the center of the pattern which tapers off toward the edges due to the elliptical shape of the orifice. This requires the overlapping on a header to achieve a totally even spray distribution. The diagram shows how the coverage should be overlapped for optimum performance. The 5-15° offset ensures the sprays won't collide. Parabolic distribution nozzle series are indicated by this symbol:

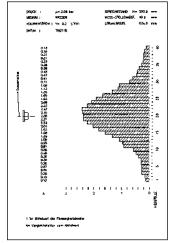
Even

These designs distribute the liquid evenly across the full width of the spray, most commonly by deflector nozzles. This is best when using only one or two nozzles for a specific application. Total liquid distribution When designing headers, the overlap should either be 0% or 50% on each side. Even distribution nozzle series are indicated by this symbol:



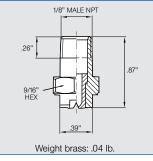

Deflector nozzles

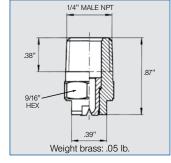

The tongue-type nozzle design represents a special kind of flat fan nozzle. With this nozzle type, the flat fan spray pattern is produced by a solid stream deflecting upon an attached tongue plate. There are two such styles. In one, fluid is channeled into a powerful narrow angle jet (see photo at right). In the other, fluid is spread to create a wide angle spray. Due to large free passage sections, tongue-type nozzles are more resistant to clogging.

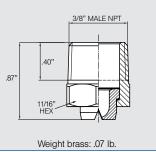


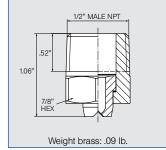
Arrangement of nozzles

Liquid distribution for single flat fan nozzle


Precision standard design axial flat fan nozzles. Stable spray angles at a wide range of pressures. Uniform parabolic distribution. Most capacities use Lechler's insert design.


Applications:


- Spray cleaning
- Lubricating
- · Board and web rinsing
- · Parts washing



x			C	Order	ing no	Э.				, ter	passage			(Gall	Flow Rate ons Per M	inute)				oray
\triangleleft	Туре		Mater	rial no).		Conn	ection		aler	ass			liters per						erage 10 psi
Spray angle		ss ₈₀₈ 16	310 SS 916 SS 91	Brass 00	JONA 5E	¹ /8"	Male ¹ /4"	NPT ³ /8"	¹ /2"	 Equivalent Orifice diam. 	d ee Lee (in.)	10 psi	20 psi	minute 2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
20°	632. 301 632. 361	0	0 0	0	0	BA BA	BC BC	-	-	.028 .039	.024 .032	.05 .10	.07 .14	.32 .63	.10 .20	.12 .24	.14 .28	.16 .31	3	5 5
	632. 441 632. 481	0	0	0	0	BA BA	BC BC	-	-	.053 .059	.043 .047	.19 .25	.27 .35	1.3 1.6	.39 .50	.48 .61	.55 .70	.61 .78	3	6
30°	632.302 632.362	0	0	0	-	BA BA	BC BC	-	-	.024 .039	.020 .028	.05 .10	.07 .14	.32 .63	.10 .20	.12 .24	.14 .28	.16 .31	5 5	9
	632. 402 632. 482	0	0	0	0	BA BA	BC BC	-	-	.047 .059	.035 .043	.16 .25	.22 .35	1.0 1.6	.31 .50	.38 .61	.44 .70	.49 .78	5 5	9
	632.562	0	Õ	Õ	Õ	BA	BC	-	-	.079	.059	.39	.55	2.5	.78	.95	1.1	1.2	5	9
	632. 642 632. 722	0	0	0	-	-	BC BC	-	-	.099 .118	.071 .095	.62 .98	.88 1.4	4.0 6.3	1.2 2.0	1.5 2.4	1.8 2.8	2.0 3.1	5 5	9 9
	632. 762 632. 802	0	0	0	-	-	BC BC	-	-	.138 .158	.091 .122	1.2 1.6	1.8 2.2	8 10.0	2.5 3.1	3 3.8	3.5 4.4	3.9 4.9	5	9
	632.882 632.922	0	0	0	-	-	-	-	BG BG	.197 .217	.157	2.5 3.1	3.5 4.4	16.0	5.0 6.2	6.1 7.6	7.0 8.8	7.9 9.8	5	10
	632.962	0	0	0	-	-	-	-	BG	.236	.185	3.9	5.5	20.0 25.0	7.8	9.5	11.0	12.3	5	10
	633.002	0	-	-	-	-	-	-	BG	.276	.220	4.9	6.9	31.5	9.8	12.0	13.9	15.5	5	10

Example	Туре	+	Material no. +	۲	Conn.	=	Ordering no.
for ordering:	632. 402	+	16 +	۲	BA	=	632. 402. 16. BA

Continued on next page.

Other sizes available upon request.

1) We reserve the right to deliver AISI 303 or AISI 304 under the material no. 16. 2) We reserve the right to deliver AISI 316L under the material no. 17.

/ **P**_2 1-800-777-2926

Series 632 / 633

¢	Tura				ing no).	Conn	ontion		Equivalent Orifice diam.	passage			(Gall	Flow Rate ons Per M					oray erage
	Туре	SS	IVIATE S	rial no			Conne	ection		vale ce c	pas			liters per						30 psi
Spray angle		S EOE 16 ¹⁾	390 17 ²⁾	Brass 90	4074 5E	¹ /8"	Male ¹ /4"	NPT ³ /8"	¹ /2"	前更 回 (in.)	Lee (in.)	10 psi	20 psi	minute 2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
45°	632. 303	0	0	0	-	BA	BC	-	-	.028	.020	.05	.07	.32	.10	.12	.14	.16	6	11
	632.363	0	0	0	0	BA	BC	-	-	.039	.024	.10	.14	.63	.20	.24	.28	.31	6	11
	632.403	0	0	0	0	BA	BC	-	-	.047	.035	.16	.22	1.0	.31	.38	.44	.49	7	13
	632.483	0	0	0	0	BA	BC	-	-	.059	.043	.25	.35	1.6	.50	.61	.70	.78	7	13
	632.563	0	0	0	0	BA	BC	-	-	.079	.055	.39	.55	2.5	.78	.95	1.1	1.2	7	14
	632.603	0	0	0	-	BA	BC	-	-	.087	.067	.49	.69	3.2	.98	1.2	1.4	1.5	7	14
	632.643	0	0	0	0	BA	BC	-	-	.099	.063	.62	.88	4.0	1.2	1.5	1.8	2	7	14
	632.673	0	0	0	-	-	BC	BE	-	.106	.083	.74	1.0	4.8	1.5	1.8	2.1	2.3	8	15
	632.723	0	0	0	-	-	BC	BE	-	.118	.095	.98	1.4	6.3	2.0	2.4	2.8	3.1	8	15
	632.763	0	0	0	-	-	BC BC	BE BE	- BG	.138	.091	1.2	1.8	8.0	2.5	3	3.5	3.9	8	15
	632.803	0	0	0	-	-	BC	BE		.158	.118	1.6	2.2	10.0	3.1	3.8	4.4	4.9	8	15
	632.843 632.883	0 0+	0+	0+	-	-	BC	-	BG BG	.177 .197	.138 .157	1.9 2.5	2.7 3.5	12.5 16.0	3.9 5.0	4.8 6.1	5.5 7.0	6.1 7.9	9	15 17
	632. 923	0.	0.	0		-	ьс -	-	BG	.197	.165	3.1	4.4	20.0	6.2	7.6	8.8	9.8	9	17
	632.923	ŏ	ŏ	0	-	-	-	-	BG	.236	.185	3.9	5.5	25.0	7.8	9.5	11.0	12.3	9	17
60°	632.304	0	0	0	0	BA	BC	-	-	.028	.016	.05	.07	.32	.10	.12	.14	.16	8	17
00	632.334	ŏ	õ	0	0	BA	BC	-	-	.028	.010	.03	.07	.32	.10	.12	.14	.22	9	17
	632.364	õ	õ	ŏ	ŏ	BA	BC	-	-	.039	.020	.10	.10	.43	.20	.24	.20	.31	9	18
	632.404	0	0	ŏ	ŏ	BA	BC	-	-	.033	.024	.16	.22	1.0	.20	.38	.44	.49	10	19
	632.444	õ	ŏ	Õ	0	BA	BC	_	-	.053	.035	.10	.27	1.3	.39	.48	.55	.61	10	19
	632, 484	Õ	Õ	Õ	O *	BA	BC	-	-	.059	.039	.25	.35	1.6	.50	.61	.70	.78	10	20
	632.514	0	Ō	Ō	0	BA	BC	-	-	.065	.043	.29	.42	1.9	.59	.72	.83	.93	11	20
	632.564	0	0	0	0	BA	BC	-	-	.079	.051	.39	.55	2.5	.78	.95	1.1	1.2	11	21
	632.604	0	0	0	0	BA	BC	-	-	.087	.059	.49	.69	3.2	.98	1.2	1.4	1.5	11	22
	632.644	0	0	0	•	-	BC	BE	-	.099	.063	.62	.88	4.0	1.2	1.5	1.8	2.0	12	22
	632.674	0	0	0	•	-	BC	BE	-	.106	.071	.74	1.0	4.8	1.5	1.8	2.1	2.3	12	23
	632.724	0	0	0	•	-	BC	BE	-	.118	.083	.98	1.4	6.3	2.0	2.4	2.8	3.1	12	23
	632.764	0	0	0	-	-	BC	BE	-	.138	.091	1.2	1.8	8.0	2.5	3.0	3.5	3.9	12	23
	632.804	O+	0+	0+	○*	-	BC	-	BG	.158	.102	1.6	2.2	10.0	3.1	3.8	4.4	4.9	12	23
	632.844	0+	0+	0+	○*	-	BC	-	BG	.177	.118	1.9	2.7	12.5	3.9	4.8	5.5	6.1	12	23
	632.884	O +	0+	0+	0*	-	BC	-	BG	.197	.134	2.5	3.5	16.0	5.0	6.1	7.0	7.9	12	22
	632.924	0	0	0	-	-	-	-	BG	.217	.165	3.1	4.4	20.0	6.2	7.6	8.8	9.8	13	25
	632.964	0	0	0	-	-	-	-	BG	.236	.185	3.9	5.5	25.0	7.8	9.5	11.0	12.3	13	25
	633.004	0	0	-	-	-	-	-	BG	.276	.205	4.9	6.9	31.5	9.8	12.0	13.9	15.5	13	25
	633.044	0	0	0	-	-	-	-	BG	.315	.217	6.2	8.8	40.0	12.4	15.2	17.6	19.6	13	23
750	633.084	0	0	0	-	-	-	-	BG	.354	.268	7.7	11.0	50.0	15.5	19.0	21.9	24.5	13	25
75°	632.145	0	-	0	-	BA	BC	-	-	.006	.012	.008	.011	.05	.016	.019	.022	.025	11	22
	632.165	0	-	0	-	BA BA	BC BC	-	-	.008	.013	.011	.015	.07	.022	.027	.031	.034	11	22
	632. 185 632. 215	0	-	0	-	BA	BC	-	-	.014 .016	.008 .008	.012 .017	.018 .024	.08	.025 .034	.030 .042	.035	.039 .054	12	23 23
	632.215	0	-	0	-	BA BA	BC	-	-	.016	.008	.017	.024 .035	.11	.034 .05	.042	.048	.054	12	23
	632.245	0	-	0	-	BA	BC	-	-	.020	.012	.025	.035	.16	.05	.06	.10	.00	12	23
	032.275	0	-	0	-	BA	BC	-	-	.024	.012	.03	.05	.22	.07	.08	.10		12	23

* Only available in connection BC

+ Only available in connection BG

Continued on next page.

Other sizes available upon request.

Example	Туре	+	Material no. +	,	Conn.	=	Ordering no.
for ordering:	632. 403	+	16 +		BA	=	632. 403. 16. BA

We reserve the right to deliver AISI 303 or AISI 304 under the material no. 16.
 We reserve the right to deliver AISI 316L under the material no. 17.

Series 632 / 633

¢	Туре		C Mater		ing no	Э.	Connect	ion	ent diam.	passage			(Gal	Flow Rate ons Per Mi	nute)			Cov	oray erage
Spray angle	туре	303 SS	316 SS	Brass	PVDF		Male NP	Т	Equivalent Orifice diam.	Free	10	20	liters per minute 2	40	60	80	100		i0 psi
ω		16 ¹⁾	17 ²⁾	30	5E	¹ /8"	1/4" 3	/8" 1/2"	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	H=10"	H=20"
90°	632.216	0	-	0	-	BA	20		.016	.008	.017	.024	.11	.034	.042	.048	.054	15	28
	632.276	0	-	0	-	BA			.024	.012	.034	.05	.22	.07	.08	.10	.11	15	29
	632.306	0	0	0	0	BA			.028	.016	.05	.07	.32	.10	.12	.14	.16	15	29
	632.336 632.366	0	0	0	0	BA BA			.035 .039	.020 .020	.07 .10	.10 .14	.45	.14	.17	.20 .28	.22 .31	16 17	31 32
	632.300 632.406	0	0	0	0	BA			.039	.020	.10	.14	.63 1.0	.20 .31	.24 .38	.20	.31	17	32
	632.406	0	0	0	0	BA			.047	.028	.16	.22	1.0	.31	.30	.44	.49	17	32
	632.446	ŏ	ŏ	ŏ	ŏ	BA			.053	.032	.19	.27	1.6	.59	.40	.55	.78	17	33
	632.516	ŏ	0	ŏ	ŏ	BA			.065	.035	.29	.42	1.9	.50	.01	.83	.93	17	33
	632.566	0	0	ŏ	0	BA			.003	.033	.23	.55	2.5	.78	.72	1.1	1.2	18	33
	632,606	ŏ	ŏ	ŏ	ŏ	BA			.087	.047	.49	.69	3.2	.98	1.2	1.4	1.5	18	34
	6 32.646	Ō	Õ	õ	0*	-		BE -	.099	.051	.62	.88	4.0	1.2	1.5	1.8	2.0	18	34
	632,676	0	0	0	0*	_		BE -	.106	.055	.74	1.0	4.8	1.5	1.8	2.1	2.3	18	34
	632.726	0	0	0	0*	-	BC E	BE -	.118	.067	.98	1.4	6.3	2.0	2.4	2.8	3.1	19	35
	632.766	0	0	0	0*	-	BC E	BE -	.138	.067	1.2	1.8	8.0	2.5	3.0	3.5	3.9	19	35
	632.806	0+	0+	O +	•	-	вс	- BG	.158	.095	1.6	2.2	10.0	3.1	3.8	4.4	4.9	19	35
	632.846	0+	0+	0+	0*	-	BC	- BG	.177	.095	1.9	2.7	12.5	3.9	4.8	5.5	6.1	19	35
	632.886	0+	0+	0+	•	-	BC	- BG	.197	.122	2.5	3.5	16.0	5.0	6.1	7.0	7.9	19	36
	632.926	O+	0+	0+	•	-	BC	- BG	.217	.165	3.1	4.4	20.0	6.2	7.6	8.8	9.8	21	40
	632.966	0	0	0	-	-		- BG	.236	.185	3.9	5.5	25.0	7.8	9.5	11.0	12.3	21	40
120°	632. 187	0	-	0	-	BA			.014	.008	.012	.018	.08	.025	.030	.035	.039	25	47
	632. 217	0	-	0	-	BA			.016	.008	.017	.024	.11	.034	.042	.048	.054	25	48
	632.247	0	-	0	-	BA			.020	.008	.025	.035	.16	.05	.06	.07	.08	26	48
	632.277	0	-	0	-	BA			.024	.012	.034	.05	.22	.07	.08	.10	.11	26	49
	632.307	0	0	0	0	BA			.028	.012	.05	.07	.32	.10	.12	.14	.16	26	49
	632.337	0	0	0	0	BA BA			.035	.016	.07	.10	.45	.14	.17	.20	.22	26	50
	632.367 632.407	0	0	0	0	BABA			.039 .047	.020 .024	.10 .16	.14 .22	.63 1.0	.20 .31	.24 .38	.28	.31 .49	26 26	50 50
	632.407	ŏ	0	ŏ	0	BA			.047	.024	.10	.22	1.0	.31	.30	.55	.49	20	50
	632. 447	0	0	0	0	BA			.059	.024	.25	.35	1.6	.50	.40	.70	.78	27	50
	632.517	ŏ	ŏ	ŏ	ŏ	BA			.065	.024	.29	.42	1.9	.59	.72	.83	.93	27	50
	632.567	ŏ	ŏ	ŏ	ŏ	BA			.079	.035	.39	.55	2.5	.78	.95	1.1	1.2	27	51
	632, 607	ŏ	0	Õ	0	BA			.087	.043	.49	.69	3.2	.98	1.2	1.4	1.5	27	51
	632.647	ō	ō	õ	-	-		3E -	.099	.051	.62	.88	4.0	1.2	1.5	1.8	2.0	27	51
	632.677	0	0	0	•	-	BC E	BE -	.106	.055	.74	1.0	4.8	1.5	1.8	2.1	2.3	28	52
	632.727	0	0	0	•	-	BC E	BE -	.118	.063	.98	1.4	6.3	2.0	2.4	2.8	3.1	29	54
	632.767	0	0	0	0*	-	BC E	8E -	.138	.067	1.2	1.8	8.0	2.5	3.0	3.5	3.9	30	55
	632.807	0	0	0	-	-	BC	- BG	.158	.079	1.6	2.2	10.0	3.1	3.8	4.4	4.9	31	57
	632.847	0+	0+	0+	•	-	BC	- BG	.177	.091	1.9	2.7	12.5	3.9	4.8	5.5	6.1	31	57
	632.887	0	0	0	-	-	-	- BG	.197	.102	2.5	3.5	16.0	5.0	6.1	7.0	7.9	31	57
	632.927	0	0	0	-	-	-	- BG	.217	.114	3.1	4.4	20.0	6.2	7.6	8.8	9.8	31	57

Only available in connection BC

Only available in connection BG +

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	632.406	+	16	+	BA	=	632. 406. 16. BA

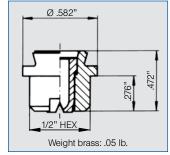
1) We reserve the right to deliver AISI 303 or AISI 304 under the material no. 16. 2) We reserve the right to deliver AISI 316L under the material no. 17.

Other sizes available upon request.

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Conversion formula for the above series: $V_2 = V_1 - \sqrt{\frac{P_2}{P_2}}$ (sector symbol definitions.) 1-800-777 - P326

Automatic jet alignment due to dovetail guide (this tip requires dovetail base). Stable spray angle. Uniform parabolic distribution of liquid. With appropriate spray height and distance between centers on spray bar, provides an even total liquid distribution. Assembles with 3/8" retaining nut.



Cleaning installations

- Cooling headers
- Spray pipes

Orifice offset from dovetail by 5°

¢	Or	dering	no.		an.	passage			(Gal	Flow Rate lons Per Mir	nute)			Spray C @ 30	overage
\downarrow	Туре		aterial r	10.	/aler e di	pasc			liters per minute		,) psi
Spray angle		SS E0E 16	316 SS 17	00 Brass	i): Equivalent Orifice diam.	eo LL (in.)	10 psi	20 psi	minute 2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
20°	660. 301	0	0	0	.028	.024	.05	.07	.32	.10	.12	.14	.16	2	4
	660.361	0	0	0	.039	.032	.10	.14	.63	.20	.24	.28	.31	3	5
	660. 441	0	0	0	.053	.043	.19	.27	1.3	.39	.48	.55	.61	3	5
	660. 481	0	0	0	.059	.047	.25	.35	1.6	.50	.61	.70	.78	3	5
30°	660.302	0	0	0	.024	.020	.05	.07	.32	.10	.12	.14	.16	4	8
	660.362	0	0	0	.039 .047	.028 .035	.10 .16	.14 .22	.63 1.0	.20 .31	.24 .38	.28	.31 .49	4	8
	660. 402 660. 482	0	0	0	.047	.035	.16 .25	.22	1.0	.31	.38	.44	.49 .78	4	8
	660, 562	Ö	ŏ	ŏ	.039	.043	.25	.55	2.5	.30	.01	1.1	1.2	4	8
45°	660.303	0	0	0	.028	.020	.05	.07	.32	.10	.12	.14	.16	7	13
43	660.363	ŏ	ŏ	ŏ	.028	.020	.00	.14	.63	.10	.12	.28	.10	7	13
	660, 403	ŏ	ŏ	ŏ	.033	.024	.10	.22	1.0	.20	.38	.44	.49	7	13
	660, 483	0	0	0	.059	.043	.25	.35	1.6	.50	.61	.70	.78	7	13
	660. 563	0	0	0	.079	.055	.39	.55	2.5	.78	.95	1.1	1.2	7	14
	660. 643	0	0	0	.099	.071	.62	.88	4.0	1.2	1.5	1.8	2.0	7	14
60°	660.304	0	0	0	.028	.016	.05	.07	.32	.10	.12	.14	.16	11	21
	660.334	0	0	0	.035	.020	.07	.10	.45	.14	.17	.20	.22	11	21
	660.364	0	0	0	.039	.024	.10	.14	.63	.20	.24	.28	.31	11	21
	660. 404	0	0	0	.047	.032	.16	.22	1.0	.31	.38	.44	.49	11	21
	660. 444	0	0	0	.053	.035	.19	.27	1.3	.39	.48	.55	.61	11	21
	660. 484	0	0	0	.059	.039	.25	.35	1.6	.50	.61	.70	.78	11	21
	660. 514 660. 564	0	0	0	.065 .079	.043 .051	.29 .39	.42 .55	1.9 2.5	.59 .78	.72 .95	.83 1.1	.93 1.2	11 11	21 21
	660.604	ŏ	ŏ	ŏ	.073	.059	.39	.69	3.2	.78	1.2	1.4	1.5	11	21
	660.644	ŏ	Ŏ	Õ	.007	.063	.62	.88	4.0	1.2	1.5	1.4	2.0	11	21
	660.724	ŏ	ŏ	ŏ	.118	.083	.98	1.4	6.3	2.0	2.4	2.8	3.1	11	20
	660.804	-	0	Ō	.158	.102	1.6	2.2	10.0	3.1	3.8	4.4	4.9	11	20
75°	660. 145	0	-	0	.008	.005	.008	.011	.05	.016	.019	.022	.025	13	24
	660. 165	0	-	0	.008	.003	.011	.015	.07	.022	.027	.031	.034	13	24
	660. 185	0	-	0	.008	.006	.012	.018	.09	.025	.030	.035	.039	13	25
	660. 215	0	-	0	.020	.008	.017	.024	.11	.034	.042	.048	.054	13	25
	660. 245	0	-	0	.020	.300	.025	.035	.16	.05	.06	.07	.08	14	25
	660. 275	0	-	0	.024	.300	.034	.05	.22	.07	.08	.10	.11	14	25

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	660.304	+	16	=	660. 304. 16

1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

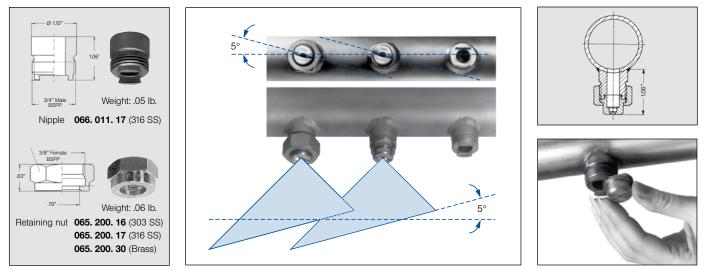
A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Flat fan

95

Continued on next page.

Flat fan nozzle tips with dovetail guide Series 660



\$	Or	dering I	no.		an.	age			(Gal	Flow Rate lons Per Mir	nute)			Spray C @ 30	
	Туре	Ma SS	aterial I		Equivalent Orifice diam.	passage			liters per minute		,			. @ 31) psi
Spray angle		s coc 16	ss 916 17	30	in.)	e بنا (in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
90°	660.216	0	-	0	.016	.200	.017	.024	.11	.034	.042	.048	.054	20	35
	660.276	0	-	0	.024	.300	.034	.05	.22	.07	.08	.10	.11	20	35
	660.306	0	0	0	.028	.016	.05	.07	.32	.10	.12	.14	.16	20	37
	660.336	0	0	0	.035	.020	.07	.10	.45	.14	.17	.20	.22	20	37
	660.366	0	0	0	.039	.020	.10	.14	.63	.20	.24	.28	.31	20	37
	660.406	0	0	0	.047	.028	.16	.22	1.0	.31	.38	.44	.49	20	37
	660.446	0	0	0	.053	.032	.19	.27	1.3	.39	.48	.55	.61	20	36
	660.486	0	0	0	.059	.032	.25	.35	1.6	.50	.61	.70	.78	20	36
	660. 516	0	0	0	.065	.035	.29	.42	1.9	.59	.72	.83	.93	20	36
	660.566	0	0	0	.079	.043	.39	.55	2.5	.78	.95	1.1	1.2	20	36
	660.606	0	0	0	.087	.047	.49	.69	3.2	.98	1.2	1.4	1.5	20	36
	660.646	0	0	0	.099	.051	.62	.88	4.0	1.2	1.5	1.8	2.0	20	36
	660.676	0	0	0	.106	.055	.74	1.0	4.8	1.5	1.8	2.1	2.3	19	36
	660.726	0	0	0	.118	.067	.98	1.4	6.3	2.0	2.4	2.8	3.1	19	35
	660.806	0	0	0	.158	.095	1.6	2.2	10.0	3.1	3.8	4.4	4.9	19	34
120°	660. 187	0	-	0	.014	.008	.012	.018	.08	.025	.030	.035	.039	26	48
	660.217	0	-	0	.016	.008	.017	.024	.11	.034	.042	.048	.054	26	48
	660.247	0	-	0	.020	.008	.025	.035	.16	.05	.06	.07	.08	26	49
	660.277	0	-	0	.024	.012	.034	.05	.22	.07	.08	.10	.11	26	49
	660.307	0	-	0	.028	.012	.05	.07	.32	.10	.12	.14	.16	26	50
	660.337	0	0	0	.035	.016	.07	.10	.45	.14	.17	.20	.22	26	50
	660.367	0	0	0	.039 .047	.016	.10	.14	.63	.20	.24	.28	.31	26	50
	660. 407 660. 447	0	0	0	.047	.024 .024	.16	.22 .27	1.0 1.3	.31 .39	.38 .48	.44 .55	.49	26 26	50 50
	660. 447 660. 487	0	0	0	.053	.024	.19 .25	.27	1.3	.39	.48	.55	.61	26	50
	660. 467 660. 517	0	0		.059	.024	.25	.35	1.6	.50	.01	.70	.78	27	50
	660.517	0	0	0	.065	.035	.29	.42	2.5	.59 .78	.72	1.1	1.2	27	50
	660. 607	0	0	0	.079 .087	.035	.39	.55	3.2	.78 .98	1.2	1.1	1.2	27	50
	660.647	ŏ	0	0	.087	.043	.49	.88	4.0	.90 1.2	1.5	1.4	2.0	28	51
	660.727	ŏ	0	0	.033	.063	.02	1.4	6.4	2.0	2.4	2.8	3.1	20	52
	660.807	ŏ	-	0	.158	.003	1.6	2.2	10.0	3.1	3.8	4.4	4.9	31	53
	000.007		-		.150	.075	1.0	2.2	10.0	5.1	0.0	4.4	4.5	51	55

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	660.306	+	16	=	660. 306. 16

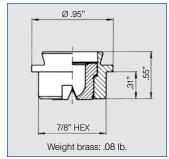
1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

Accessories

Standard accessories, alignment, and installation for the Series 660 dovetail nozzle tip

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Conversion formula for the above series: $V_2 = V_1 - \sqrt{\frac{P_2}{P_2}}$ (1-800-777-2926) definitions.)


Automatic jet alignment due to dovetail guide (this tip requires dovetail base). Stable spray angle. Uniform parabolic distribution of liquid. With appropriate spray height and distance between centers on spray bar, provides an even total liquid distribution. Assembles with 3/4" retaining nut.

Applications:

- Cleaning installations
- Cooling headers
- Spray pipes
- Roll cooling
- Cooling of rolled stock

Orifice offset from dovetail by 15°

• 000	Jing of roll	eu sic	JUK			_	-							-	
¢		dering			Equivalent Orifice diam.	Free passage			(Ga	Flow Rate llons Per Mir	nute)				overage 0 psi
	Туре	M S	aterial ۱ پر	-	ivale ce d	bas			liters per minute						
Spray angle		16	^{S 910} 17 ¹⁾	30(in	лііі ШО .) (in.)	psi	10 psi	20 bar	2 psi	40 psi	60 psi	80 psi	100 H=10"	H=20"	
20°	664, 721	0	0	0	.118	.099	.98	1.4	6.3	2.0	2.4	2.8	3.1	4	8
	664.801	0	0	0	.158	.126	1.6	2.2	10.0	3.1	3.8	4.4	4.9	4	8
	664.881	0	0	0	.197	.158	2.5	3.5	16.0	5.0	6.1	7.0	7.8	4	8
	664. 921	0	0	0	.217	.173	3.1	4.4	20.0	6.2	7.6	8.8	9.8	4	8
	664. 961	0	0	0	.236	.201	3.9	5.5	25.0	7.8	9.5	11.0	12.3	4	8
30°	664. 722	0	0	0	.118	.095	.98	1.4	6.3	2.0	2.4	2.8	3.1	6	11
	664. 762	0	0	0	.138	.106	1.2	1.8	8.0	2.5	3.0	3.5	3.9	6	11
	664.802	0	0	0	.158	.122	1.6	2.2	10.0	3.1	3.8	4.4	4.9	6	11
	664.882	0	0	0	.197	.158	2.5	3.5	16.0	5.0	6.1	7.0	7.8	6	11
	664. 922	0	0	0	.217	.173	3.1	4.4	20.0	6.2	7.6	8.8	9.8	6	11
	664.962	0	0	0	.236	.197	3.9	5.5	25.0	7.8	9.5	11.0	12.3	6	11
	665.042	0	-	0	.315	.252	6.2	8.8	40.0	12.4	15.2	17.6	19.6	6	11
	665. 122	-	-	0	.394	.323	9.8	13.8	63.0	19.5	23.9	27.6	30.9	6	11
45°	664. 723	0	0	0	.118	.095	.98	1.4	6.3	2.0	2.4	2.8	3.1	10	19
	664. 763	0	0	0	.138	.102	1.2	1.8	8.0	2.5	3.0	3.5	3.9	10	19
	664.803	0	0	0	.158	.118	1.6	2.2	10.0	3.1	3.8	4.4	4.9	10	19
	664.843	0	0	0	.177	.134	1.9	2.7	12.5	3.9	4.8	5.5	6.1	10	19
	664.883	0	0	0	.197	.150	2.5	3.5	16.0	5.0	6.1	7.0	7.8	10	20
	664. 923	0	0	0	.217	.165	3.1	4.4	20.0	6.2	7.6	8.8	9.8	11	20
	664.963	0	0	0	.236	.043	3.9	5.5	25.0	7.8	9.5	11.0	12.3	11	20
	665. 043	-	-	0	.315	.232	6.2	8.8	40.0	12.4	15.2	17.6	19.6	11	20
60°	664. 724	0	0	0	.118	.083	.98	1.4	6.3	2.0	2.4	2.8	3.1	12	22
	664. 764	0	0	0	.138	.091	1.2	1.8	8.0	2.5	3.0	3.5	3.9	12	22
	664.804	0	0	0	.158	.102	1.6	2.2	10.0	3.1	3.8	4.4	4.9	12	22
	664. 844	0	0	0	.177	.118	1.9	2.7	12.5	3.9	4.8	5.5	6.1	12	22
	664. 884	0	0	0	.197	.134	2.5	3.5	16.0	5.0	6.1	7.0	7.8	12	22
	664. 924	0	0	0	.217	.162	3.1	4.4	20.0	6.2	7.6	8.8	9.8	12	23
	664.964	0	0	0	.236	.165	3.9	5.5	25.0	7.8	9.5	11.0	12.3	12	23
	665.044	0	0	0	.315	.217	6.2	8.8	40.0	12.4	15.2	17.6	19.6	12	23
	665.084	0	0	0	.355	.244	7.8	11.0	50.0	15.5	19.0	21.9	24.5	13	23
	665. 124	-	-	0	.394	.292	9.8	13.8	63.0	19.5	23.9	27.6	30.9	13	24

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	664. 721	+	16	=	664. 721. 16

1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

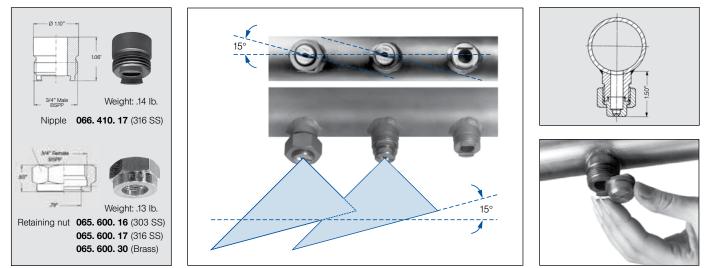
Flat fan

Conversion formula for the above series: V, www.Leschlerusa symm definitions.)

97

Continued on next page.

Flat fan nozzle tips with dovetail guide Series 664 / 665



x	Ord	dering r	10.		Flow Rate Flow Rate Gallons Per Minute Iters per Buo Buo Iters per Buo Iters per Buo Iters per minute Iters per minute								Coverage		
\triangleleft	Туре	Ma	aterial r	10.	alen e dia	ass			· · · ·		iute)			@ 30) psi
≥o		SS	SS	s	iffice				liters per minute						
Spray angle		⁸⁰⁸ 16	918 17 1)	Brass 30	йÖ (in.)	Eree (in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
90°	664. 726	0	0	0	.118	.200	.98	1.4	6.3	2.0	2.4	2.8	3.1	17	31
	664.766	0	0	0	.138	.300	1.2	1.8	8.0	2.5	3.0	3.5	3.9	17	31
	664.806	0	0	0	.158	.095	1.6	2.2	10.0	3.1	3.8	4.4	4.9	17	31
	664.846	0	0	0	.177	.095	1.9	2.7	12.5	3.9	4.8	5.5	6.1	17	31
	664.886	0	0	0	.197	.122	2.5	3.5	16.0	5.0	6.1	7.0	7.8	17	31
	664.926	0	0	0	.217	.142	3.1	4.4	20.0	6.2	7.6	8.8	9.8	17	31
	664.966	0	0	0	.236	.154	3.9	5.5	25.0	7.8	9.5	11.0	12.3	17	31
	665.046	-	-	0	.315	.193	6.2	8.8	40.0	12.4	15.2	17.6	19.6	17	31
	665. 126	-	-	0	.394	.252	9.8	13.8	63.0	19.5	23.9	27.6	30.9	17	31
120°	664.727	0	0	0	.118	.063	.98	1.4	6.3	2.0	2.4	2.8	3.1	49	85
	664. 767	0	0	0	.138	.067	1.2	1.8	8.0	2.5	3.0	3.5	3.9	49	85
	664.807	0	0	0	.158	.079	1.6	2.2	10.0	3.1	3.8	4.4	4.9	49	85
	664.887	0	0	0	.197	.102	2.5	3.5	16.0	5.0	6.1	7.0	7.8	49	85
	664. 927	0	0	0	.217	.114	3.1	4.4	20.0	6.2	7.6	8.8	9.8	49	85
	664.967	-	-	0	.236	.126	3.9	5.5	25.0	7.8	9.5	11.0	12.3	49	85
	665 .047	-	-	0	.315	.173	6.2	8.8	40.0	12.4	15.2	17.6	19.6	49	85

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	664. 727	+	16	=	664. 727. 16

1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

Accessories

Standard accessories, alignment, and installation for the Series 664 dovetail nozzle tip

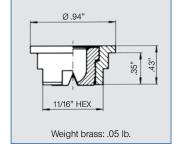
A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

 $\overline{P_2}$

1-800-77∀-**2**926

Flat fan nozzle tips

Series 656 / 657


Easy nozzle changing, simple jet alignment. Uniform, parabolic distribution of liquid. Increased non-clogging features, more jet power, less fog. Assembles with 3/4" retaining nut.

Applications:

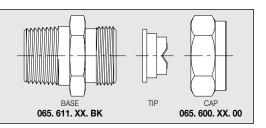
- Cleaning installations
- Gravel washing
- Cooling headers
- Spray pipes
- Roll cooling
- Cooling of rolled stock

لد	Image: Constraint of the second se													Spray C @ 30	
4	Туре		aterial i	10.	aler e dia	Jass			liters per)			@ 31	J psi
Spray angle		SS EOE 16	316 SS 316 SS 12,0	Brass 30	Orifio Orifio	Lee (in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
20°	656. 721	0	0	0	.118	.099	.98	1.4	6.3	2.0	2.4	2.8	3.1	4	8
	656. 801	0	0	0	.158	.126	1.6	2.2	10.0	3.1	3.8	4.4	4.9	4	8
	656. 881	0	0	0	.197	.158	2.5	3.5	16.0	5.0	6.1	7.0	7.8	4	8
	656. 921	0	0	0	.217	.173	3.1	4.4	20	6.2	7.6	8.8	9.8	4	8
	656. 961	0	0	0	.236	.209	3.9	5.5	25	7.8	9.5	11.0	12.3	4	8
30°	656. 722	0	0	0	.118	.095	.98	1.4	6.3	2.0	2.4	2.8	3.1	6	11
	656. 762	0	0	0	.138	.106	1.2	1.8	8.0	2.5	3.0	3.5	3.9	6	11
	656.802	0	0	0	.158	.122	1.6	2.2	10.0	3.1	3.8	4.4	4.9	6	11
	656.882	0	0	0	.197	.158	2.5	3.5	16.0	5.0	6.1	7.0	7.8	6	11
	656. 922	0	0	0	.217	.173	3.1	4.4	20	6.2	7.6	8.8	9.8	6	11
	656.962	0	-	0	.236	.197	3.9	5.5	25	7.8	9.5	11.0	12.3	6	11
45°	656. 723	0	0	0	.118	.095	.98	1.4	6.3	2.0	2.4	2.8	3.1	11	20
	656. 763	0	0	0	.138	.102	1.2	1.8	8.0	2.5	3.0	3.5	3.9	11	20
	656.803	0	0	0	.158	.118	1.6	2.2	10.0	3.1	3.8	4.4	4.9	11	20
	656.843	0	0	0	.177	.134	1.9	2.7	12.5	3.9	4.8	5.5	6.1	11	20
	656.883	0	0	0	.197	.150	2.5	3.5	16.0	5.0	6.1	7.0	7.8	11	20
	656.923 656.963	0	0	0	.217 .236	.165 .173	3.1 3.9	4.4 5.5	20 25	6.2 7.8	7.6 9.5	8.8 11.0	9.8 12.3	11	20 20
000		0	0	0		-			-	-		-			
60°	656. 724 656. 764	0	0	0	.118 .138	.083 .091	.98 1.2	1.4 1.8	6.3 8.0	2.0 2.5	2.4 3.0	2.8 3.5	3.1 3.9	13 13	23 23
	656.804	ŏ		0	.158	.102	1.2	2.2	10.0	2.5 3.1	3.8	4.4	4.9	13	23
	656.844	0	0	0	.136	.102	1.0	2.2	12.5	3.9	4.8	5.5	6.1	13	23
	656.884	ŏ	ŏ	ŏ	.177	.134	2.5	3.5	16.0	5.0	6.1	7.0	7.8	13	23
	656. 924	ŏ	ŏ	ŏ	.217	.162	3.1	4.4	20	6.2	7.6	8.8	9.8	13	23
	656.964	Õ	Ő	0	.236	.165	3.9	5.5	25	7.8	9.5	11.0	12.3	13	23
	657.044	-	ŏ	ŏ	.315	.217	6.2	8.8	40	12.4	15.2	17.6	19.6	13	23

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	656. 721	+	16	=	656. 721. 16

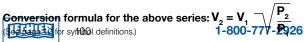
1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

Continued on next page.



X	Or	dering r	10.		Equivalent Orifice diam.	passage			(Gal	Flow Rate lons Per Mir	nute)			Spray C @ 30	overage
¢	Туре		aterial r	10.	e di	Dass			liters per		iuto)			@ 31) psi
<u>e</u> a		3 SS	s ss	Brass	rifio	Free p			minute						
Spray angle		^{EOE} 16	³¹⁰ 17 ¹⁾	30	йО (in.)	正 (in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
90°	656. 726	0	0	0	.118	.067	.98	1.4	6.3	2.0	2.4	2.8	3.1	17	31
	656.766	0	0	0	.138	.075	1.2	1.8	8.0	2.5	3.0	3.5	3.9	17	31
	656.806	0	0	0	.158	.095	1.6	2.2	10.0	3.1	3.8	4.4	4.9	17	31
	656.846	0	0	0	.177	.095	1.9	2.7	12.5	3.9	4.8	5.5	6.1	17	31
	656.886	0	0	0	.197	.122	2.5	3.5	16.0	5.0	6.1	7.0	7.8	17	31
	656. 926	0	0	0	.217	.142	3.1	4.4	20	6.2	7.6	8.8	9.8	17	31
	656.966	0	0	0	.236	.154	3.9	5.5	25	7.8	9.5	11.0	12.3	17	31
	657.046	-	-	0	.315	.193	6.2	8.8	40	12.4	15.2	17.6	19.6	17	31
120°	656. 727	0	0	0	.118	.063	.98	1.4	6.3	2.0	2.4	2.8	3.1	27	53
	656. 767	0	0	0	.138	.067	1.2	1.8	8.0	2.5	3.0	3.5	3.9	31	63
	656 .807	0	0	0	.158	.079	1.6	2.2	10.0	3.1	3.8	4.4	4.9	29	58
	656.887	0	0	0	.197	.102	2.5	3.5	16.0	5.0	6.1	7.0	7.8	31	61
	656. 927	0	0	0	.217	.114	3.1	4.4	20	6.2	7.6	8.8	9.8	32	64

Base and Cap for Mounting


Inlet Male NPT	Outlet Male	Part No.	
3/4" ВК	3/4" BSPP	065. 611. XX.	Standard Materials: 17 316 SS 30 Brass
Сар			
To fit 3/4" BS	SPP	065. 600. XX. 00	Other materials available. See Accessories beginning on page 127.

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	656.727	+	16	=	656. 727. 16

1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Ø .58'

7/16" HEX

Weight brass: .02 lb.

PVDF

.43" 35"

Precision standard design axial flat fan nozzle tips. Stable spray angles at a wide range of pressures. Uniform parabolic distribution. Most capacities use Lechler's insert design. For use with nozzle base and cap.

₹20°-75°

Stainless Steel or Brass

Applications:

- Spray cleaning
- Lubricating

Board and web rinsing

· Parts washing

	s wasning	dering				_	Φ				Flaw Data				Spray C	
¢			·			liam	sag			(Gal	Flow Rate lons Per Mir	nute)			@ 30	
	Туре	l SS		ial no		Equivalent Orifice diam.	Free passage			liters per minute						
Spray angle		303 S	316 SS	Brass	PVDF	Drific	ree	10	20	2	40	l 60	80	I 100		
ars		16	17 ¹⁾	30	5 E	(in.)	(in.)	psi	psi	bar	psi	psi	psi	psi	H=10"	H=20"
20°	652.301	0	0	0	0	.028	.024	.05	.07	.32	.10	.12	.14	.16	3	5
	652.361	0	0	0	0	.039	.032	.10	.14	.63	.20	.24	.28	.31	3	5
	652.441	0	0	0	0	.053	.043	.19	.27	1.3	.39	.48	.55	.61	3	5
	652. 481 652. 511	0 -	0 -	0	0	.059 .065	.047 .055	.25 .29	.35 .42	1.6 1.9	.50 .59	.61 .72	.70 .83	.78 .93	3 3	5 5
30°	652.302	-	0	0	0	.003	.020	.05	.42	.32	.10	.12	.14	.16	5	9
	652.362	Õ	Õ	Õ	Õ	.039	.028	.10	.14	.63	.20	.24	.28	.31	5	9
	652.402	0	0	0	0	.047	.035	.16	.22	1.0	.31	.38	.44	.49	5	9
	652.442	0	0	0	0	.053	.039	.19	.27	1.3	.39	.48	.55	.61	5	9
	652.482	0	0	0	0	.059	.043	.25	.35	1.6	.50	.61	.70	.78	5	9
	652.562 652.602	0	0	0	0	.079 .087	.059 .067	.39 .49	.55 .69	2.5 3.2	.78 .98	.95 1.2	1.1 1.4	1.2 1.5	5 5	9
	652.602 652.642	0	0		-	.087 .099	.067	.49 .62	.69 .88	4.0	.96	1.2	1.4 1.8	2.0	5 5	9
	652.722	ŏ	ŏ	ŏ	-	.118	.071	.02	1.4	6.3	2.0	2.4	2.8	3.1	5	9
	652.762	0	0	0	-	.138	.106	1.2	1.8	8.0	2.5	3.0	3.5	3.9	5	9
	652.802	0	0	0	-	.158	.122	1.6	2.2	10.0	3.1	3.8	4.4	4.9	5	9
45°	652.303	0	0	0	-	.028	.020	.05	.07	.32	.10	.12	.14	.16	7	13
	652.363	0	0	0	0	.039	.024	.10	.14	.63	.20	.24	.28	.31	7	13
	652.403	0	0	0	-	.047	.035	.16	.22	1.0	.31	.38	.44	.49	7 7	13 13
	652. 443 652. 483	0	0	0	-	.053 .059	.039 .043	.19 .25	.27 .35	1.3 1.6	.39 .50	.48 .61	.55 .70	.61 .78	7	13
	652. 513	ŏ	ŏ	ŏ	-	.065	.043	.29	.42	1.9	.59	.72	.83	.93	7	13
	652.563	0	0	0	0	.079	.055	.39	.55	2.5	.78	.95	1.1	1.2	7	13
	652.603	0	0	0	-	.087	.067	.49	.69	3.2	.98	1.2	1.4	1.5	7	13
	652.643	0	0	0	0	.099	.071	.62	.88	4.0	1.2	1.5	1.8	2.0	7	14
	652.723	0	0	0	-	.118	.095	.98	1.4	6.3	2.0	2.4	2.8	3.1	7	14
	652. 763 652. 803	0	0	0	-	.138 .158	.102 .118	1.2 1.6	1.8 2.2	8.0 10.0	2.5 3.1	3.0 3.8	3.5 4.4	3.9 4.9	7 8	14 14
60°	652.304	0	0	0	-	.028	.016	.05	.07	.32	.10	.12	.14	.16	11	21
	652.334	ŏ	ŏ	ŏ	ŏ	.035	.010	.00	.10	.45	.14	.17	.20	.22	11	21
	652.364	0	0	0	0	.039	.024	.10	.14	.63	.20	.24	.28	.31	11	21
	652.404	0	0	0	0	.047	.032	.16	.22	1.0	.31	.38	.44	.49	11	21
	652.444	0	0	0	0	.053	.035	.19	.27	1.3	.39	.48	.55	.61	11	21
	652.484	0	0	0	0	.059	.039	.25	.35	1.6	.50	.61	.70	.78	11	21
	652. 514 652. 564	0	0	0	0	.065 .079	.043 .051	.29 .39	.42 .55	1.9 2.5	.59 .78	.72 .95	.83 1.1	.93 1.2	11 11	21 21
	652.604	õ	0	0	0	.075	.051	.39	.69	3.2	.78	1.2	1.4	1.2	11	20
	652.644	0	0	0	0	.099	.063	.62	.88	4.0	1.2	1.5	1.8	2.0	11	20
	652.674	0	0	0	0	.106	.071	.74	1.0	4.8	1.5	1.8	2.1	2.3	11	20
	652.724	0	0	0	0	.118	.083	.98	1.4	6.3	2.0	2.4	2.8	3.1	11	20
	652.764	0	0	0	-	.138	.091	1.2	1.8	8.0	2.5	3.0	3.5	3.9	11	20
	652.804	0	0	0	0	.158	.102 .118	1.6	2.2 2.7	10.0 12.5	3.1 3.9	3.8 4.8	4.4 5.5	4.9 6.1	11 11	20 20
	652. 844 652. 884	0	-	0	-	.177 .197	.118 .134	1.9 2.5	2.7	12.5	3.9 5.0	4.8 6.1	5.5 7.0	6.1 7.8	11	20
	652. 884 652. 944	ŏ	0	0	-	.225	.134 .173	2.5 3.5	4.9	22	7.0	8.5	9.8	11.0	11	20
L			-	<u> </u>		0		2.0					- 10			

≮90°-120°

Flat fan

Example Туре + Material no. = Ordering no. for ordering: 652. 403 + 30 = 652.403.30

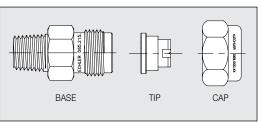
Continued on next page. A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

Conversion formula for the above series: V_{2} www.Leschlerusa symm definitions.)

Flat fan nozzle tips

Series 652



	Or	dering	g no.			Ę	e D			Spray C	overage					
$ \downarrow $	Туре		Vateri	ial no		∘Equivalent Orifice diam.	passage			,	llons Per Mir	nute)			@ 30) psi
> 0		SS	SS	%	ų	liva				liters per minute						
Spray angle		^{сос} 16	316 SS 1 1 2	Brass 30	¹⁰⁷⁴ 5E	шО (in.)	ein.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	H=10"	H=20"
75°	652. 145	0	-	0	-	.008	.005	.008	.011	.05	.016	.019	.022	.025	11	22
	652. 165	0	-	0	-	.008	.003	.011	.015	.07	.022	.027	.031	.034	11	22
	652. 185	0	-	0	-	.008	.006	.012	.018	.08	.025	.030	.035	.039	11	22
	652.215	0	-	0	-	.016	.008	.017 .025	.024 .035	.11	.034	.042 .06	.048	.054 .08	11	22 22
	652. 245 652. 275	0	-	0	-	.020 .024	.012 .012	.025	.035	.16 .22	.05 .07	.06	.07 .10	.08	11	22
90°	652.215	0	-	0	-	.024	.012	.034	.03	.22	.07	.03	.048	.054	15	30
90	652.216	0	-	0	-	.018	.008	.017	.024	.22	.034	.042	.048	.034	18	30
	652.306	0	0	ŏ	0	.024	.012	.05	.03	.32	.10	.00	.10	.16	18	31
1 1	652, 336	Ō	Ō	ŏ	Õ	.035	.020	.00	.10	.45	.14	.12	.20	.22	18	31
	652.366	0	0	0	0	.039	.020	.10	.14	.63	.20	.24	.28	.31	18	31
	652.406	0	0	0	0	.047	.028	.16	.22	1.0	.31	.38	.44	.49	18	31
	652.446	0	0	0	0	.053	.032	.19	.27	1.3	.39	.48	.55	.61	18	31
	652.486	0	0	0	0	.059	.032	.25	.35	1.6	.50	.61	.70	.78	18	31
	652.516	0	0	0	0	.065	.035	.29	.42	1.9	.59	.72	.83	.93	18	31
	652.566	0	0	0	0	.079	.043	.39	.55	2.5	.78	.95	1.1	1.2	18	32
	652.606	0	0	0	0	.087	.047	.49	.69	3.2	.98	1.2	1.4	1.5	18	32
	652.646	0	0	0	0	.099	.051	.62	.88	4.0	1.2	1.5	1.8	2.0	18	32
	652.676	0	0	0	0	.106	.055	.74	1.0	4.8	1.5	1.8 2.4	2.1	2.3	18	32 32
	652.726 652.766	0	0	0	-	.118 .138	.067 .075	.98 1.2	1.4 1.8	6.3 8.0	2.0 2.5	3.0	2.8 3.5	3.1 3.9	18 18	32
	652.806	ŏ	ŏ	0	-	.158	.075	1.6	2.2	10.0	3.1	3.8	4.4	4.9	18	32
	652.846	-	-	õ	ŏ	.177	.035	1.9	2.7	12.5	3.9	4.8	5.5	6.1	18	32
	652.886	0	-	õ	õ	.197	.122	2.5	3.5	16.0	5.0	6.1	7.0	7.8	18	33
120°	652, 187	0	-	0	-	.014	.008	.012	.018	.08	.025	.030	.035	.039	25	48
	652.217	Ō	-	õ	-	.016	.008	.017	.024	.11	.034	.042	.048	.054	26	48
	652.247	0	-	0	-	.020	.008	.025	.035	.16	.05	.06	.07	.08	26	49
	652.277	0	-	0	-	.024	.012	.034	.05	.22	.07	.08	.10	.11	26	49
	652.307	0	-	0	0	.028	.012	.05	.07	.32	.10	.12	.14	.16	26	50
	652.337	0	0	0	0	.035	.016	.07	.10	.45	.14	.17	.20	.22	26	50
	652.367	0	0	0	0	.039	.020	.10	.14	.63	.20	.24	.28	.31	26	50
	652.407	0	0	0	0	.047	.024	.16	.22	1.0	.31	.38	.44	.49	26	50
	652. 447 652. 487	0	0	0	0	.053 .059	.024	.19 .25	.27 .35	1.3 1.6	.39 .50	.48	.55 .70	.61 .78	26 26	50 50
	652. 517	0	0	0	0	.059	.024	.25	.35	1.0	.50	.01	.70	.78	26	50
	652.517	0	0	0	ŏ	.085	.035	.29	.42	2.5	.39	.72	1.1	1.2	26	50
	652.607	ŏ	ŏ	õ	Õ	.073	.000	.00	.69	3.2	.98	1.2	1.4	1.5	27	51
	652.647	Ō	Ō	õ	-	.099	.051	.62	.88	4.0	1.2	1.5	1.8	2.0	27	51
	652.677	0	0	0	-	.106	.055	.74	1.0	4.8	1.5	1.8	2.1	2.3	27	51
	652.727	0	0	0	0	.118	.063	.98	1.4	6.3	2.0	2.4	2.8	3.1	27	52
	652.767	0	0	0	-	.138	.067	1.2	1.8	8.0	2.5	3.0	3.5	3.9	28	52
	652.807	0	0	0	-	.158	.079	1.6	2.2	10.0	3.1	3.8	4.4	4.9	28	52
	652.847	-	-	-	0	.177	.091	1.9	2.7	12.5	3.9	4.8	5.5	6.1	31	57
	652.887	-	-	-	0	.197	.102	2.5	3.5	16.0	5.0	6.1	7.0	7.8	31	57

Bases and Caps for Mounting

Inlet NPT Male	Outlet Male	Part No.	
1/4"	11/16 x 16	065. 215. XX. 10	Standard Materials:
3/8"	11/16 x 16	065. 211. XX. 10	17 316 SS
1/4"	3/8 BSPP	065. 215. XX. 11	
3/8"	3/8 BSPP	065. 215. XX. 12	
Caps			
To fit 11/16x1		069. 000. XX. 00	
To fit 3/8 BSF	P	065. 200. XX. 00	Accessories beginning on page 127.

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	652.407	+	30	=	652. 407. 30

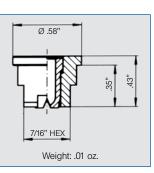
1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

 $V_2 = V_1 - \sqrt{\frac{P_2}{P_2}}$ 1-800-777-2926

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Flat fan

Flat fan nozzle tips for conveyor lubrication


Series 652. xxx. 8H. 03

Especially low flow rates. Parabolic liquid distribution

Applications:

- Belt lubrication
- Spraying of food products
- Oiling of metal sheets

X	Ordering no.				Color	Free Passage		Flow		
	Туре		Mat. nc).		(in.)		(Gallons P	er Minute)	
Spray angle		SS E0E 16	SS E0E/WOd 303 8H.03*	WOd 56.03			15 psi	liters per minute 2 bar	45 psi	75 psi
75°	652. 145	0	0	0	green	.012	.011	.050	.016	.021
	652. 165	0	0	0	black	.013	.013	.070	.023	.030
	652. 185	0	0	0	red	.008	.016	.080	.026	.034
	652. 215	0	0	0	blue	.008	.021	.110	.036	.050
	652. 245	0	0	0	orange	.012	.032	.160	.050	.070
	652.275	0	0	0	brown	.012	.042	.220	.070	.090
120°	652. 187	0	0	0	grey	.008	.060	.080	.026	.034
	652. 247	0	0	0	black	.008	.120	.160	.050	.070
	652. 277	0	0	0	black	.012	.160	.220	.070	.090

* Housing POM, nozzle insert 303 SS

Pos.	Name	Ordering no.	Material	Dimensions (in.) Hex/			
				L	L1	Flats	(in.)
1	Gauze filter with	095. 016. 53. 11. 00	PP	.83	.06	-	.003
	return valve	095. 016. 53. 14. 63	PP	.83	.06	-	.003
2	Gasket	065. 240. 55	PTFE	-	-	-	-
	Gashel	065. 240. 72	EWP 210	-	-	-	-
3	Nozzle	Ordering no. see	303 SS	11	9	.39	-
	TNOZZIE	flow tables	POM/303 SS*	12	10	.32	-
4	Cap nut	065. 200. 16	303 SS	13	10	.32	-
		065. 200. 56	POM	14.5	11.5	.87	-

* Housing POM, Nozzle insert 303 SS

** Size of mesh

Operating pressure range: 14.5 to 72.5 psi

Recommended operating pressure: 45 psi

Viscosity:

The nozzles can be operated with viscous media, e.g. transmission fluid (max. approx. 200 mPas). However the spray angle decreases.

Return valve with gauze filter:

- Prevents dripping and saves medium
- Size of filter mesh: .003 in. (200 mesh)

 095.016.53.11.00
 Opening pressure: approx. 7 psi Closing pressure: approx. 4 psi

 095.016.53.14.63
 Opening pressure: approx. 40 psi Closing pressure: approx. 23 psi

> Position 1 Gauze filter with return valve

Position 2 Gasket

Position 3 Nozzle

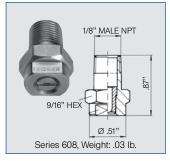
Position 4 Cap nut

11.4

Ø 14.8

3/8 BSPP

-


Sharp uniform flat fan for high pressure usage.

Applications:

- High pressure cleaners
- Steam jet cleaners

Materials:

Nozzle body: 303 SS Insert: Hardened stainless steel

No	zzle Cod	le		Flow Ra	te Code		lent diam.	는 Flow Rate (Gallons Per Minute)								
		I		Spray	Angle	I	Equivalent Orifice diam.	40	600	1000	ı 1500	liters per minute 100	2000	ı 3000	4500	
1/8"	1/4"	nut	20°	30°	45°	60°	(in.)	psi	psi	psi	psi	bar	psi	psi	psi	
608	602	652	361	362	363	364	.039	.20	.77	.99	1.2	4.5	1.4	1.7	2.1	
608	602	652	381	382	383	384	.043	.25	.95	1.2	1.5	5.6	1.7	2.1	2.6	
608	602	652	401	402	403	404	.046	.30	1.2	1.5	1.8	6.8	2.1	2.6	3.2	
608	602	652	411	412	413	414	.051	.34	1.3	1.7	2.1	7.8	2.4	3.0	3.6	
608	602	652	451	452	453	454	.053	.40	1.6	2.0	2.5	9.2	2.8	3.5	4.3	
608	602	652	471	472	473	474	.055	.45	1.7	2.3	2.8	10.3	3.2	3.9	4.8	
608	602	652	481	482	483	484	.061	.51	2.0	2.5	3.1	11.5	3.6	4.4	5.4	
608	602	652	501	502	503	504	.063	.55	2.1	2.8	3.4	12.6	3.9	4.8	5.9	
608	602	652	521	522	523	524	.067	.60	2.3	3.0	3.7	13.8	4.3	5.2	6.4	
608	602	652	531	532	533	534	.070	.65	2.5	3.3	4.0	14.8	4.6	5.6	6.9	
608	602	652	541	542	543	544	.070	.70	2.7	3.5	4.3	15.9	4.9	6.0	7.4	
608	602	652	551	552	553	554	.074	.75	2.9	3.7	4.6	17.0	5.3	6.5	7.9	
608	602	652	571	572	573	574	.080	.80	3.1	4.0	4.9	18.2	5.6	6.9	8.4	
608	602	652	591	592	593	594	.082	.90	3.5	4.5	5.5	21	6.4	7.8	9.6	
608	602	652	601	602	603	604	.090	1.0	3.9	5.0	6.1	23	7.1	8.7	10.6	
-	602	652	641	642	643	644	.098	1.2	4.8	6.2	7.6	28	8.7	10.7	13.1	
-	602	652	671	672	673	674	.106	1.5	5.7	7.4	9.1	34	10.5	12.8	15.7	
-	602	652	701	702	703	704	.118	1.7	6.7	8.7	10.6	40	12.3	15.0	18.4	
	602	652	-	-	723	724	.120	2.0	7.8	10.0	12.3	46	14.2	17.3	21	
	602	652	-	-	793	-	.154	2.9	11.4	14.7	18.0	67	21	25	31	

Connection Code	Connection	Maximum pressure
A3. 00 A3. 07	Male BSPT Male NPT	Approx. 5000 psi Approx. 5000 psi
A3. 29	Retainer cap	Approx. 3000 psi

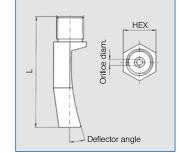
Example	Nozzle code	+	Flow rate code	+	Connection code	=	
for ordering:	602.	+	361	+	A3. 07	=	
(see bolded o	olumn heading	ys a	bove)				

Ordering no.

602. 361. A3. 07 (.99 gpm & 20° spray angle @ 1000 psi; 1/4" Male NPT)

Flat fan

Flat fan nozzles Tongue-type impactor deflector Series 688 / 689


Deflector design provides clog resistance and high impact at low pressures. Even distribution.

Applications:

- Heavy impact washing
- Drum filter cleaning
- Knock-off showers
- Phosphating lines



\$	ngle			ering no.			diam.			(G	Flov allons	/ Rate Per Min	ute)			Dimer (ir	nsions n.)	Weight 303 SS	Spray V (in.) @	
7	or ar	Туре		ial no.	Conn	lection				liters per						(,			t
je ⊴	Deflector		33 SS	ЪF	Male	NPT	Drifice			minúte										<u> </u>
Spray angle	Defi		⁰⁰ 16	5E	³ /8"	³ /4"	(in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	L	Hex	(lb.)	H=10"	i H=20"
45°	35°	688. 763	0	-	BE	-	.118	1.2	1.8	8.0	2.1	2.5	3.0	3.5	3.9	1.7	3/4	.25	9	17
	30°	688.843	0	-	BE	-	.150	1.9	2.7	12.5	3.4	3.9	4.8	5.5	6.1	2.0	3/4	.29	9	17
	29°	688.923	0	-	BE	-	.189	3.1	4.4	20	5.4	6.2	7.6	8.8	9.8	2.3	7/8	.54	9	17
	35°	689.003	0	0	-	BK	.236	4.9	6.9	32	8.6	9.8	12.0	13.8	15.5	3.1	1-1/4	.67	10	19
																3.1*	15/16*	.07*		

* Measurement for PVDF model

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	688. 923	+	16	+	BE	=	688. 923. 16. BE

Phosphating line

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Flat fan

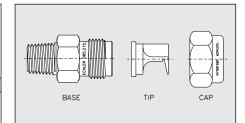
Flat fan nozzle tips Tongue-type deflector wide angle Series 684

Deflector produces moderate impact with a very wide spray angle. Clog resistant. Even distribution. Assembles with 3/8" retaining nut.

Applications:

- Foam control for storage tanks, wastewater treatment plants
- Dust suppression
- Light washing
- Spray cooling
- Degreasing and phosphating

	ř.	- 3 1-	proopriating												-	
X	angle	Orde	ering no.		Color for version	diam.				Flow I Gallons Pe						Spray Width B
17		Туре	Mater	ial no.	56 POM	ie di			liters per						(L)	(in.) @ 30 psi
Spray angle	Deflector		WOd 56	JOVY 5E	*version 5E PVDF is blue	(in)	10 psi	20 psi	minute 2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	(in.)	H=10"
140°	75°	684.348	0	-	Green	.028	.08	.11	.50	.13	.16	.19	.22	.25	.8	54
		684.368	0	0	Yellow	.032	.10	.14	.63	.17	.20	.24	.28	.31	.8	54
		684.408	0	-	Blue	.039	.16	.22	1.0	.27	.31	.38	.44	.49	.8	54
		684. 448	0	-	Red	.047	.19	.27	1.3	.35	.39	.48	.55	.61	.8	54
		684. 488	0	0	Brown	.051	.25	.35	1.6	.43	.50	.61	.70	.78	.8	54
		684. 528	0	-	Grey	.059	.31	.44	2.0	.54	.62	.76	.88	.98	.8	54
		684. 568	0	0	White	.067	.39	.55	2.5	.67	.78	.95	1.1	1.2	.7	54
		684.608	0	-	Light blue	.075	.49	.69	3.2	.86	.98	1.2	1.4	1.5	.7	54
		684.688	0	-	Green	.095	.78	1.1	5.0	1.3	1.6	1.9	2.2	2.5	.7	54
		684. 728	0	0	Black*	.106	.98	1.4	6.3	1.7	2.0	2.4	2.8	3.1	.7	54
		684.808	0	-	Purple	.134	1.6	2.2	10.0	2.7	3.1	3.8	4.4	4.9	.6	54


Angle of

Deflection

Bases and Caps for Mounting

Inlet NPT Male	Outlet Male	Part No.	
1/4" 3/8"	11/16 x 16 11/16 x 16	065. 215. XX. 10 065. 211. XX. 10	Standard Materials: 17 316 SS
1/4" 3/8"	3/8 BSPP 3/8 BSPP	065. 215. XX. 11 065. 215. XX. 12	30 Brass
Caps			
To fit 11/16x1 To fit 3/8 BSF		069. 000. XX. 00 065. 200. XX. 00	Other materials available. See Accessories beginning on page 127.

Example	Туре	+	Material no.	=	Ordering no.
for ordering:	684.608	+	56	=	684. 608. 56

- Ø .58"-

Weight: .01 lb.

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Flat fan nozzles Tongue-type deflector wide angle Series 686

moderate impact with a very wide spray angle. Clog resistant. Even distribution.

Applications:

Deflector produces

- · Foam control for storage tanks, wastewater treatment plants
- Dust suppression
- Light washing
- Spray cooling

angle ¢

Deflector

75°

40°

40°

40°

40°

40°

75°

Spray angle

90° 53°

140°

· Degreasing and phosphating

Туре

686.366

686.406

686.686

686.726

686.806

686.886

686.926

686.368

686.408

686.448

686.488

686. 528

686.568

686.608

686.648

686.688

686.728

686.768

686.808

686.828

686.848

686.868

686.888

686.908

686.928

686.968

686.988

Ma

316 SS

17

-

_

-

- \odot

 $^{\circ}$

Ο

0

0

0 0

0

0 0 -BA BC

0 0 -

 $^{\circ}$ $^{\circ}$ -

0 0 -

0

0

 $^{\circ}$

0 -BA* вс

--

0

BA BC*

BA BC

BA* вс

BA BC

-

-

-_

BC

вс

BC

BC

-

-

-BA BC

-BA BC

-

-

-

-

.067

.075

087

.095

.106

.118

.134

.142

150

.158

165

.177

.185

.209

221

_

-

-

-

-

-

-

-

-

--

-

-

BG

BG

-

-

BE

BE

BE

.39

.49

62

.78

.98

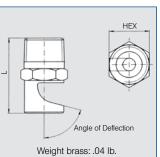
1.2

1.6

1.7

1.9

2.2


2.5

2.8

3.1

3.9

43

Dime	Dimensions (in.)										
Inlet (NPT)											
1/8	.91	7/16	.03								
1/4	1.10	9/16	.06								
3/8	1.26	11/16	.09								
1/2	1.58	7/8	.20								

Spray Width B (in.) @ 30 psi

H=10"

20

21

21

21

21

21

21

54

54

54

54

54

54

54

54

54

54

54

54

54

54

54

54

54

54

54

54

1.2

1.5

2.0

2.5

3.1

3.9

49

5.5

6.1

6.9

7.8

8.8

9.8

12.3

13.7

Orc	lering	no.				am.						-)			
terial	no.		Conn	ection		ġ.									
ĸ	ЪF		Male	NPT		ifice			liters per minute						
ад 30	5E	¹ /8"	¹ /4"	³ /8"	¹ /2"	ັດ (in.)	10 psi	20 psi	2 bar	30 psi	40 psi	60 psi	80 psi	100 psi	
0		B٨			_	031	10	14	63	17	20	24	28	.31	
			-	-	-									.31	
	-	DA		-	-										
	-	-		-	-		-			-	-	-		2.5	
	-	BA		-	-									3.1	
0	-	-	BC	-	-	.133	1.6	2.2	10.0	2.7	3.1	3.8	4.4	4.9	
-	-	-	BC	-	-	.165	2.5	3.5	16.0	4.3	5.0	6.1	7.0	7.8	
-	-	-	-	BE	-	.185	3.1	4.4	20	5.4	6.2	7.6	8.8	9.8	
0	-	BA	-	-	-	.032	.10	.14	.63	.17	.20	.24	.28	.31	
0	-	BA	-	-	-	.039	.16	.22	1.0	.27	.31	.38	.44	.49	
0	-	BA	BC	-	-	.047	.19	.27	1.3	.35	.39	.48	.55	.61	
0	-	BA	BC	-	-	.051	.25	.35	1.6	.43	.50	.61	.70	.78	
0	-	BA	BC	-	-	.059	.31	.44	2.0	.54	.62	.76	.88	.98	
	tterial ssea 30 0 0 0 0 0 0 0 0 0 0 0 0 0	Set of the	No. No. <th>Iterial no. Conn. gg gg Male 30 5E 1/s" 1/4" 0 - BA - 0 - BA BC 0 - BA BC 0 - BA BC 0 - BA BC</th> <th>Iterial no. Connection Image: Second condition Male NPT 30 5E 1/6" 1/4" 3/6" Image: Second condition BA - - - Image: Second condition BA - - - Image: Second condition - BC - - Image: Second condition - BC - - Image: Second condition - - BC - Image: Second condition - - BE - Image: Second condition - - - - - Image: Second condition - - - - - - - - - - - - - - - - -</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>30 5E 1/a" 3/a" 1/2" (in.) psi 0 - BA - - - 0.031 .10 0 - BA - - - 0.039 .16 0 - BA - - 0.031 .039 0 - BA - - - 0.094 .78 0 - BA - - - 1.05 2.5 - - BC - - 0.039 .16 0 - BA - - - 0.039 .16 0</th> <th>30 5E 1/a" 3/a" 1/2" (in.) psi psi 0 - BA - - - 0.031 .10 .14 0 - BA - - - 0.031 .10 .14 0 - BA - - 0.039 .16 .22 0 - BA - - 0.039 .16 .22 0 - BA - - 0.094 .78 1.1 0 - BC - - 1.06 .98 1.4 0 - BC - - 1.05 2.5 3.5 - - BC - - 1.85 3.1 4.4 0 - BA - - 0.039 .16 .22 0 - BA - - 0.039 .16 .22 <t< th=""><th>30 5E 1/a" 3/a" 1/2" (in.) psi psi psi bar 0 - BA - - - 0.031 .10 .14 6.3 0 - BA - - 0.031 .10 .14 6.3 0 - BA - - 0.039 .16 .22 1.0 0 - BC - 0.094 .78 1.1 5.0 0 - BA - - 1.06 .98 1.4 6.3 0 - BC - - 1.05 2.5 3.5 16.0 - - BC - - 1.85 3.1 4.4 20 0 - BA - - 0.039 .16 .22 1.0 0 - BA - - 0.039 .16 .22 1.0 <t< th=""><th>30 5E 1/a" 3/a" 1/z" (in.) psi psi<</th><th>30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi psi</th><th>30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi <</th><th>30 5E 1/8" 1/4" 3/6" 1/2" (in.) psi <</th></t<></th></t<></th>	Iterial no. Conn. gg gg Male 30 5E 1/s" 1/4" 0 - BA - 0 - BA BC 0 - BA BC 0 - BA BC 0 - BA BC	Iterial no. Connection Image: Second condition Male NPT 30 5E 1/6" 1/4" 3/6" Image: Second condition BA - - - Image: Second condition BA - - - Image: Second condition - BC - - Image: Second condition - BC - - Image: Second condition - - BC - Image: Second condition - - BE - Image: Second condition - - - - - Image: Second condition - - - - - - - - - - - - - - - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30 5E 1/a" 3/a" 1/2" (in.) psi 0 - BA - - - 0.031 .10 0 - BA - - - 0.039 .16 0 - BA - - 0.031 .039 0 - BA - - - 0.094 .78 0 - BA - - - 1.05 2.5 - - BC - - 0.039 .16 0 - BA - - - 0.039 .16 0	30 5E 1/a" 3/a" 1/2" (in.) psi psi 0 - BA - - - 0.031 .10 .14 0 - BA - - - 0.031 .10 .14 0 - BA - - 0.039 .16 .22 0 - BA - - 0.039 .16 .22 0 - BA - - 0.094 .78 1.1 0 - BC - - 1.06 .98 1.4 0 - BC - - 1.05 2.5 3.5 - - BC - - 1.85 3.1 4.4 0 - BA - - 0.039 .16 .22 0 - BA - - 0.039 .16 .22 <t< th=""><th>30 5E 1/a" 3/a" 1/2" (in.) psi psi psi bar 0 - BA - - - 0.031 .10 .14 6.3 0 - BA - - 0.031 .10 .14 6.3 0 - BA - - 0.039 .16 .22 1.0 0 - BC - 0.094 .78 1.1 5.0 0 - BA - - 1.06 .98 1.4 6.3 0 - BC - - 1.05 2.5 3.5 16.0 - - BC - - 1.85 3.1 4.4 20 0 - BA - - 0.039 .16 .22 1.0 0 - BA - - 0.039 .16 .22 1.0 <t< th=""><th>30 5E 1/a" 3/a" 1/z" (in.) psi psi<</th><th>30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi psi</th><th>30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi <</th><th>30 5E 1/8" 1/4" 3/6" 1/2" (in.) psi <</th></t<></th></t<>	30 5E 1/a" 3/a" 1/2" (in.) psi psi psi bar 0 - BA - - - 0.031 .10 .14 6.3 0 - BA - - 0.031 .10 .14 6.3 0 - BA - - 0.039 .16 .22 1.0 0 - BC - 0.094 .78 1.1 5.0 0 - BA - - 1.06 .98 1.4 6.3 0 - BC - - 1.05 2.5 3.5 16.0 - - BC - - 1.85 3.1 4.4 20 0 - BA - - 0.039 .16 .22 1.0 0 - BA - - 0.039 .16 .22 1.0 <t< th=""><th>30 5E 1/a" 3/a" 1/z" (in.) psi psi<</th><th>30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi psi</th><th>30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi <</th><th>30 5E 1/8" 1/4" 3/6" 1/2" (in.) psi <</th></t<>	30 5E 1/a" 3/a" 1/z" (in.) psi psi<	30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi psi	30 5E 1/8" 1/4" 3/8" 1/2" (in.) psi <	30 5E 1/8" 1/4" 3/6" 1/2" (in.) psi <	

.55

.69

.88

1.1

1.4

1.8

2.2

2.5

2.7

3.1

3.5

3.9

4.4

5.5

6.1

2.5

3.2

4.0

5.0

6.3

8.0

10.0

11.2

12.5

14.0

16.0

18.0

20

25

28

.67

.86

1.1

1.4

1.7

2.2

2.7

3.0

3.4

3.8

4.3

4.8

5.4

6.7

7.5

.78

.98

1.2

1.6

2.0

2.5

3.1

3.5

3.9

4.3

5.0

5.6

6.2

7.8

8.7

.95

1.2

1.5

1.9

2.4

3.0

3.8

4.3

4.8

5.3

6.1

6.8

7.6

9.5

10.6

1.1

1.4

1.8

2.2

2.8

3.5

4.4

4.9

5.5

6.1

7.0

7.9

8.8

11.0

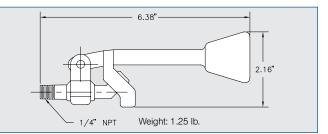
12.3

* Only available in 316 SS (material no. 17)

Example	Туре	+	Material no. +	F	Conn.	=	Ordering no.
for ordering:	686. 908	+	17 +	ŀ	BC	=	686. 908. 17. BC

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Flat fan


Designed to control foam within aeration tanks in waste treatment plants, the Easy Flush nozzle has a unique orifice configuration which produces an efficient flat fan spray. The Easy Flush nozzle also utilizes a Buna N deflector insert for quick removal upon wear, without complete nozzle replacement.

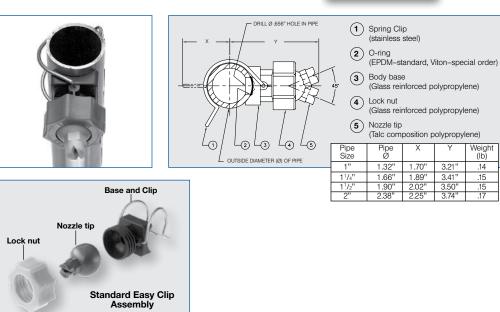
Easy Flush nozzles feature larger free passage than conventional flood type nozzles which limits clogging. They utilize low pressure liquid flow, for reduced pumping costs. In the event of a clog, simply lift the counterweight to flush the nozzle clean.

Select the Easy Flush nozzle size that provides maximum coverage at the lowest possible pressure and flow rate. Typical installation uses .3 to .4 GPM per foot of coverage, with nozzles mounted on 3 to 5 foot centers.

¢	Ordering no.			Flow and Coverage Data (Gallons Per Minute)								
					Wi	dth of spray covera	age at elevation of n	ozzle above water	line			
Spray angle	Connection: 1/4" NPT	Stamp	Pressure psi	Flow rate gpm	12"	18"	24"	30"	36"			
90°	564. 846. 32. BC	1	3 5 7 10	1.1 1.4 1.7 2.0	22" 25" 27" 29"	30" 35" 38" 43"	39" 44" 48" 53"	46" 53" 58" 64"	54" 62" 68" 73"			
120°	564. 847. 32. BC	2	3 5 7 10	1.1 1.4 1.7 2.0	34" 36" 40" 44"	45" 49" 54" 60"	56" 62" 67" 73"	66" 72" 79" 86"	75" 82" 90" —			
140°	564. 848. 32. BC	3	3 5 7 10	1.1 1.4 1.7 2.0	41" 50" 56" 65"	57" 66" 74" 84"	72" 82" 92"	85" — — —				
90°	564. 916. 32. BC	4	3 5 7 10	1.7 2.1 2.5 2.9	23" 27" 29" 31"	31" 36" 39" 42"	39" 45" 50" 54"	47" 54" 60" 65"	56" 63" 70" 76"			
120°	564. 917. 32. BC	5	3 5 7 10	1.7 2.1 2.5 2.9	38" 43" 48" 56"	49" 57" 64" 71"	60" 69" 79" 86"	70" 81" 93" 100"	81" 93" — —			
140°	564. 918. 32. BC	6	3 5 7 10	1.7 2.1 2.5 2.9	50" 60" 65" —	62" 73" 78" —	74" 87" 92" —	86" 				
90°	564. 946. 32. BC	7	3 5 7 10	2.1 2.6 3.0 3.5	24" 27" 29" 32"	33" 37" 40" 44"	41" 48" 52" 57"	50" 58" 63" 69"	58" 68" 73" 80"			
120°	564. 947. 32. BC	8	3 5 7 10	2.1 26 3.0 3.5	45" 50" 54" 59"	60" 66" 71" 78"	76" 84" 90" 100"	90" 98" —				
140°	564. 948. 32. BC	9	3 5 7 10	2.1 2.6 3.0 3.5	54" 62" —	67" 75" 	80" 88" —		- - - -			

Material: Stainless Steel

 P_2 Genversion formula for the above series: $V_2 = V_1 = V_1 = \frac{P_2}{P_2}$ (see Eq. (3) Sym108 definitions.) 1-800-7 1/7 P2926


Flat fan nozzles Easy Clip ball joint nozzle assembly Series 676

Excellent for quick and easy header construction. These spring mounting bases allow flexible nozzle alignment and a wide range of angles and flow rates. Drill .656" hole in the pipe for mounting. Assembly clamps to pipe. Nozzle ball tip adjusts as needed. No welding or threading. Maximum pressure 60 psi.

Applications:

- Parts washing and degreasing
- Phosphating lines
- Pre-painting processing

Easy Clip complete nozzle assembly

<	Туре	Mat. no.	Orderin To	0	on Pipe s	ize	Flow Rate (Gallons Per Minute)					Color	Item 5 (see top chart) Replacement Nozzle Tip
Spray angle		-≞ 53	1"	1 1/4"	1 1/2"	2"	10 psi	20 psi	40 psi	60 psi	80 psi		Ordering no.
60°	676. 724	0	30	31	32	33	.98	1.4	2	2.4	2.8	Gray	676. 724. 53. 30. 01
	676. 764	0	30	31	32	33	1.2	1.8	2.5	3	3.5	Brown	676. 764. 53. 30. 01
	676.804	0	30	31	32	33	1.6	2.2	3.1	3.8	4.4	Purple	676. 804. 53. 30. 01
	676.844	0	30	31	32	33	1.9	2.7	3.9	4.8	5.5	Yellow	676. 844. 53. 30. 01
	676.884	0	30	31	32	33	2.5	3.5	5	6.1	7	Red	676. 884. 53. 30. 01
	676.904	0	30	31	32	33	2.8	4.0	5.7	6.9	8.0	Blue	676. 904. 53. 30. 01
	676. 924	0	30	31	32	33	3.1	4.4	6.2	7.6	8.8	Green	676. 924. 53. 30. 01

Replacement parts

Item no. (see top chart)	Туре	Ordering no.	For Pipe Size
1 and 3	Base and Clip	092. 080. 53. 00. 00 092. 081. 53. 00. 00 092. 082. 53. 00. 00 092. 083. 53. 00. 00	1" 1 ¹ /4" 1 ¹ /2" 2"
4	Lock nut	092. 080. 53. 00. 02	
2	O-ring	092. 015. 6C. 04. 32	

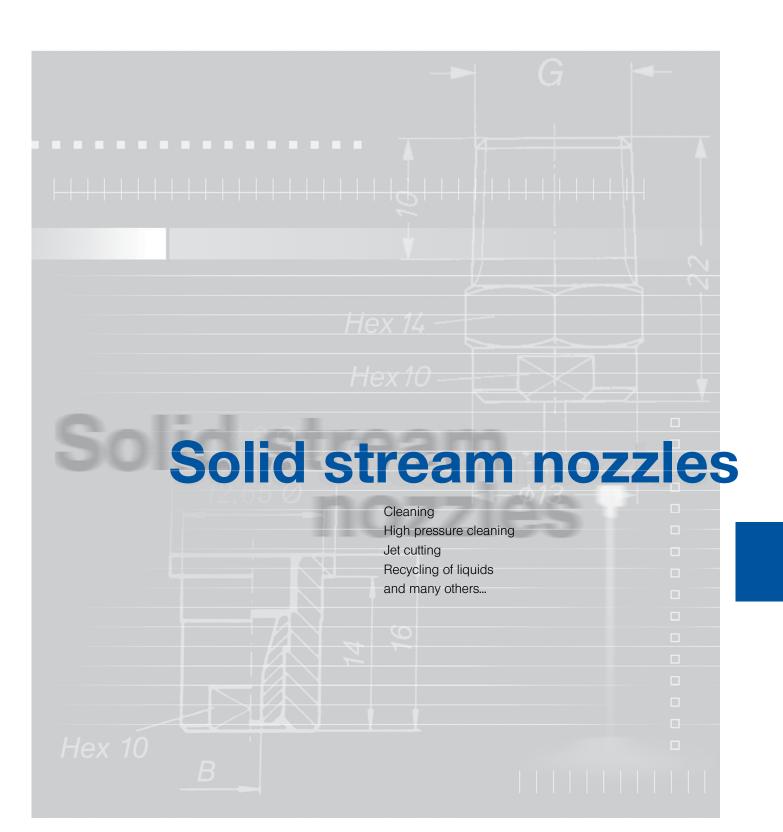
Example	Туре	+	Material no.	+	Pipe Size	=	Ordering no.	
for ordering:	676.884	+	53	+	32	=	676. 884. 53. 32	(Nozzle assembly to mount on $1 \frac{1}{2}$ " pipe)

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

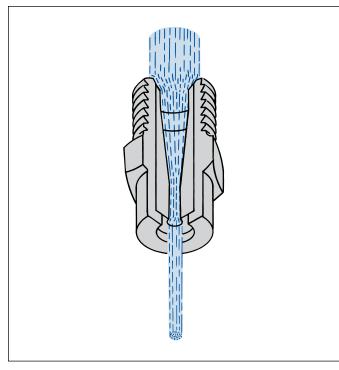
Additional flat fan nozzles available from Lechler

Lechler offers several other flat fan nozzles besides those in this catalog which may be appropriate for your application. If a nozzle in the series below is specified for a job of yours or you would just like more information about any of these products, please contact Lechler.

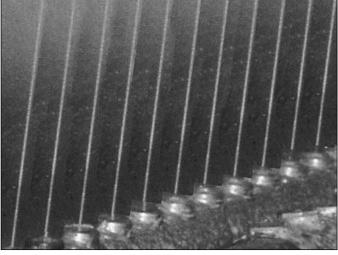
Low-pressure nozzles		Spray angles	Flow range (gpm @ 30psi)	Connection	Application/ Design
	610	20° 30° 45° 60° 75° 90° 120°	0.01 – 1.06	1/8" Male BSPP	Cleaning installations, cooling headers, spray pipes. Compact design, suited for narrow installation conditions.
	612	20° 30° 45° 60° 75° 90° 120°	0.01 - 4.23	¹ / ₄ " Male BSPP	Cleaning installations, cooling headers, spray pipes. Compact design, suited for narrow installation conditions.
	616 617	20° 30° 45° 60° 90° 120°	1.66 – 16.6	3/," Male BSPP	Cleaning installations, rain curtains, gravel washing, spray pipes, foam spraying, roll cooling, cooling of rolled stock. Compact design, suited for narrow installation conditions.
	612.xxx.5E.03	90° 120°	0.17 – 1.06	For pressing into pipe	Cleaning and rinsing operations, dish washing machines. For pressing into pipes.
000 12417 Janz	669	20° 30° 45° 60°	10.5 – 42	Tip	Cooling. Self-aligning dovetail connection ensures correct spray offset.
	672 cleaning	15° 25° 40° 50° 80° 110°	0.62 - 12.2	Tip	Cooling, lubricating. Socket alignment flats.



Low-pressure nozzles	Nozzle Series	Spray angles	Flow range (gpm @ 30psi)	Connection	Application/ Design
17 17	6F	20° 30° 45° 60°	1.6 – 26	Тір	Cooling. Automatic self-aligning feature ensures correct spray offset angle.
	6E	20° 30° 45° 60°	1.6 – 26	Tip	Cooling. No welding nipple is required because the tip geometry can be machined directly into a header.
	Descaling n SCALEMAS [*] The standard descaling tect	r eR® in			Descaling. our brochures HP" and "Nozzles nanical Descaling"
	646	20° 30° 45° 60° 90° 120°	0.08 – 0.83	Assembly with bayonet quick release system	Belt cleaning, surface treatment, cleaning, coating processes. Quick and easy assembly, adjusted spray direction.
	676 / 677 MEMO- SPRAY®	30° 60° 90° 120°	1.06 - 13.2	3/4 " BSPP Assembly with clamp for the following sizes: 1/4 , $11/4$ ", $11/2$ ", 2 " Please ask for our brochure "Surface Technology"	Cleaning problems, phosphating, degreasing, rinsing in surface treatment techniques. Ball joint, multi- directional swivelling range of 20°. Simple, quick assembly. Easy adjusting and cleaning. Retains orientation upon replacement.
	676	20° 30° 45° 60° 75° 90° 120°	0.01 – 2.64	³/ª" Female BSPP Weld base	Cleaning, cooling, and lubricating processes. Swivelling nozzle to meet exact jet alignment requirements. Multi- directional swivelling range of 30°.


Thanks to optimum flow geometries, Lechler solid stream nozzles produce compact, solid stream jets of defined lengths. The almost turbulence-free liquid inflow results in excellent spray efficiency, even without jet stabilizer inserts.

Solid stream nozzles provide the greatest impact per square inch of any other type of nozzle, all other factors being equal (such as flow rate, pressure, and spray distance). A solid stream nozzle is considered a 0° flat fan nozzle, and a flat fan nozzle's impact per square inch increases as the spray angle decreases. That is why a 0° nozzle (i.e., a solid stream nozzle) provides the greatest impact.


So for all cleaning processes, cutting operations, and applications requiring perfect columnar impacts in order to generate concentrated jet power, the precision and power of Lechler solid stream nozzles enhance the productivity and performance of your plant.

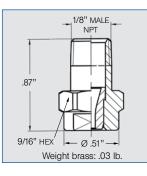
For applications requiring high pressure, Lechler has a comprehensive range of solid stream nozzles in stainless steel with special hardening. **Lechler high pressure solid stream nozzles** create tight, stable, and powerful solid jets which do not break apart even when operating at high pressures.

Solid stream

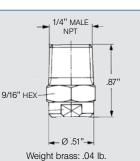
Solid stream header in use at a paper mill

Series 544

Solid stream nozzles


Solid stream with excellent stability offers the highest impact. Orifice design maintains integrity over long distances.

Applications:


- Concentrated cleaning
- Paper trimming

Series 544.110 - 544.400



Series 544.480 - 544.800

(Order	ing n	0.		Orifice diam.					Rate			
Туре	Mat.	. no.	Conr	nection			(Gallons Per Minute)						
	3 SS	ss	Male	• NPT				liters per minute					
) 16	30 Brass	¹ /8"	¹ /4"	(in.)	10 psi	20 psi	2 bar	40 psi	60 psi	80 psi	100 psi	150 psi
544, 110	0	0	BA	BC	.009	.006	.009	.04	.012	.015	.018	.020	.023
544.110	ŏ	-	BA	BC	.009	.008	.009	.04	.012	.023	.026	.020	.023
544.200	ŏ	0	BA	BC	.015	.005	.022	.10	.031	.023	.020	.023	.054
544.240	0	-	BA	BC	.013	.025	.035	.16	.05	.06	.044	.045	.10
544.280	ŏ	_	BA	BC	.025	.020	.05	.25	.08	.10	.11	.12	.15
544. 320	ŏ	0	BA	BC	.031	.06	.09	.40	.12	.15	.18	.20	.24
544.360	Ō	Ō	BA	BC	.033	.10	.14	.63	.20	.24	.28	.31	.37
544.400	0	0	BA	BC	.041	.16	.22	1.0	.31	.38	.44	.49	.59
544.480	0	0	BA	BC	.052	.25	.35	1.6	.50	.61	.70	.78	.95
544.560	0	0	BA	BC	.065	.39	.55	2.5	.78	.95	1.1	1.2	1.5
544.640	0	0	BA	BC	.082	.62	.88	4.0	1.2	1.5	1.8	2.0	2.4
544. 720	0	0	BA	BC	.105	.98	1.4	6.3	2.0	2.4	2.8	3.1	3.7
544.800	0	0	BA	BC	.130	1.6	2.2	10.0	3.1	3.8	4.4	4.9	5.9

Example	Туре	+	Material no. +	۲	Conn.	=	Ordering no.
for ordering:	544. 720	+	30 +	F	BC	=	544. 720. 30. BC

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

Exceptionally tight solid stream nozzles for pressures up to 4500 psi. Available in 1/8" NPT or BSPT, 1/4" NPT or BSPT, or tip version.

Applications:

- High pressure cleaning
- Trimming
- Jet cutting

Materials:

Nozzle body: 303 SS Insert: Hardened stainless steel

١	lozzle Code	9	Flow Rate Code	Orifice diam.					Flow Rate					
¹ /8"	¹ /4"								liters per minute					
Male NPT or BSPT	Male NPT or BSPT	Tip		(in.)	300 psi	450 psi	725 psi	1000 psi	100 bar	1500 psi	2000 psi	3000 psi	4500 psi	
550	546	548	360	.033	.54	.67	.84	.99	4.5	1.2	1.4	1.7	2.1	
550	546	548	400	.041	.82	1.0	1.3	1.5	6.8	1.8	2.1	2.6	3.2	
550	546	548	410	.042	.90	1.1	1.4	1.6	7.5	2.0	2.3	2.8	3.5	
550	546	548	420	.044	.96	1.2	1.5	1.8	8.0	2.1	2.5	3.0	3.7	
550	546	548	450	.047	1.1	1.3	1.7	2.0	9.2	2.5	2.8	3.5	4.3	
550	546	548	470	.050	1.2	1.5	1.9	2.3	10.3	2.8	3.2	3.9	4.8	
550	546	548	480	.052	1.4	1.7	2.2	2.5	11.5	3.1	3.6	4.4	5.4	
550	546	548	500	.055	1.5	1.9	2.4	2.8	12.6	3.4	3.9	4.8	5.9	
550	546	548	520	.058	1.7	2.0	2.6	3.0	13.8	3.7	4.3	5.2	6.4	
550	546	548	570	.067	2.2	2.7	3.4	4.0	18.2	4.9	5.6	6.9	8.4	
550	546	548	600	.074	2.7	3.3	4.2	5.0	23	6.1	7.0	8.6	10.5	
550	546	548	670	.091	4.1	5.0	6.4	7.5	34	9.2	10.6	13.0	15.9	
550	546	548	720	.105	5.5	6.7	8.5	10.0	46	12.3	14.2	17.3	21	

1/8" MALE NPT

Series 550, Weight: .03 lb.

Connection Code	Connection	Maximum pressure				
A3. 00	Male BSPT	Approx. 5000 psi				
A3. 07	Male NPT	Approx. 5000 psi				
A3. 29	Retainer cap	Approx. 3000 psi				

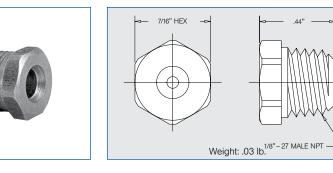
Example	Nozzle code	+	Flow rate code	+	Connection code	=	Ordering no.
for ordering:	550.	+	360.	+	A3. 07	=	550. 360. A3. 07
(see bolded o	olumn headin	(.99 gpm & 0° spray angle					
							@ 1000 psi; 1/8" Male NPT)

1/4" MALE NPT

Series 546, Weight: .04 lb.

Conversion formula for the above s	series: V
www(See carde 1218 Archordefinitions.)	115

Solid stream


For tight clearance installation, these small nozzles create a very precise, collimated stream at a wide range of pressures. The rear orifice position helps minimize clogging and facilitates cleaning.

Applications:

- Paper production
- High pressure cleaning

Material:

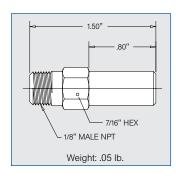
316 SS

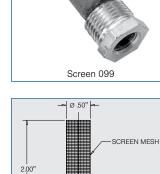
Ordering no.	Orifice Diameter
599. 040. 17. 00. 15	.015" (0.38 mm)
599. 040. 17. 00. 25	.025" (0.64 mm)
599. 040. 17. 00. 31	.031" (0.79 mm)
599. 040. 17. 00. 40	.040" (1.0 mm)

Solid stream nozzles Trimming Series 599

Second only to a diamond in wear resistance, the ruby orifice offers amazing precision, performance consistency and long operational-life.

Applications:


- Paper production
- Trimming
- High pressure cleaning
- Jet cuttings


If you're tired of poor trims, replacing worn nozzles, and sheet breaks, it's time to move up to Lechler's ruby orifice trimming nozzles. It's another step in Lechler's 130 year tradition of innovation and technological development.

Materials:

Nozzle body: Brass housing Orifice: Ruby Strainer: 316 SS

3/8" MALE NPT

∠ 1/8" FEMALE NPT

Weight: .05 lb.

The ruby orifice produces a tightly collimated solid stream for precise, predictable cutting action. The optional strainer offers a convenient way to protect against clogging caused by stray fibers or loose bits of debris in your liquid supply.

The ruby orifice is permanently mounted in a brass housing. The optional strainer is 316 stainless steel.

Ordering no.	Orifice diam.		Flow Rate (Gallons Per Minute)								
	(in.)	100 psi									
599. 128. 8J. BA. 15	.015	.05	.07	.09	.10	.11	.12	.14	.16		
599. 128. 8J. BA. 20	.020	.09	.13	.16	.18	.20	.22	.25	.28		
599. 128. 8J. BA. 25	.025	.14	.20	.24	.28	.31	.34	.40	.44		
599. 128. 8J. BA. 30	.030	.20	.28	.35	.40	.45	.49	.57	.63		
599. 128. 8J. BA. 35	.035	.28	.40	.48	.56	.63	.69	.79	.89		
599. 128. 8J. BA. 40	.040	.36	.51	.62	.72	.80	.88	1.02	1.14		
599. 128. 8J. BA. 45	.045	.45	.64	.78	.90	1.01	1.10	1.27	1.42		
599. 128. 8J. BA. 50	.050	.55	.78	.95	1.10	1.23	1.35	1.56	1.74		

Ordering no.	
Screen	Mesh size
099. 104. 17. BE. 05	50
099. 104. 17. BE. 10	100
099. 104. 17. BE. 20	200

Series 599 with Screen 099 assembled

Solid stream nozzles Needle jet Series 599

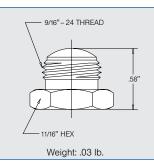
This series is designed for use on high pressure showers.

Applications:

- Paper production
- High pressure cleaning

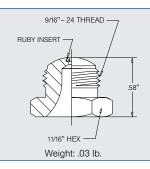
For longer service life, we offer this nozzle with a ruby orifice. The ruby insert resists wear and maintains a precise stream longer than stainless steel.

The alternate version, with the clog preventer, is designed for installing on showers without self-cleaning features. When the nozzle is spraying down, the extension draws fresh water from the shower above the sediment level.

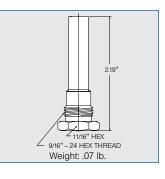

Materials:

599.009.17: 316 SS 599.009.8J: 316 SS Orifice: Ruby

599.028.17: 316 SS



Series 599. 009. 17



Series 599. 009. 8J

Series 599. 028. 17

	Ordering no.										
Standard Nozzle	Standard with Ruby Orifice	Clog Resistant									
599. 009. 17. 00. 14	599. 009. 8J. 00. 14	599. 028. 17. 00. 14	.014" (0.36 mm)								
599. 009. 17. 00. 28	599. 009. 8J. 00. 28	599. 028. 17. 00. 28	.028" (0.71 mm)								
599. 009. 17. 00. 33	599. 009. 8J. 00. 33*	599. 028. 17. 00. 33	.033" (0.84 mm)								
599. 009. 17. 00. 40	599. 009. 8J. 00. 40	599. 028. 17. 00. 40	.040" (1.0 mm)								
599. 009. 17. 00. 55	599. 009. 8J. 00. 55	599. 028. 17. 00. 55	.055" (1.40 mm)								
599. 009. 17. 00. 70	599. 009. 8J. 00. 70**	599. 028. 17. 00. 70	.070" (1.78 mm)								
599. 009. 17. 00. 94	599. 009. 8J. 00. 94	599. 028. 17. 00. 94	.094" (2.39 mm)								
599. 009. 17. 01. 25	599. 009. 8J. 01. 25	599. 028. 17. 01. 25	.125" (3.18 mm)								

* Actual orifice diameter of this ruby orifice nozzle is .032".

** Actual orifice diameter of this ruby orifice nozzle is .073".

Air nozzles

SW 19

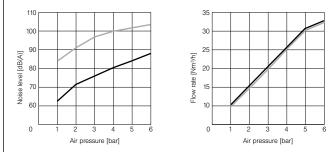
Air curtains Blowing off and out Cleaning Cooling Drying Reheating Transporting and many others...

As a rule, any flat fan or solid stream nozzle can be operated with air instead of liquid. However, you'll obtain the best results using the nozzle designs we specifically engineered for compressed air or saturated steam applications. Typical applications for Lechler air nozzles include blowing off or out, cooling, drying, or cleaning.

The problem: noisy air sprayers In many industries and

workshops, compressed air is an indispensable tool.

Compressed air is needed for cleaning, drying, blowing off, and many other applications.

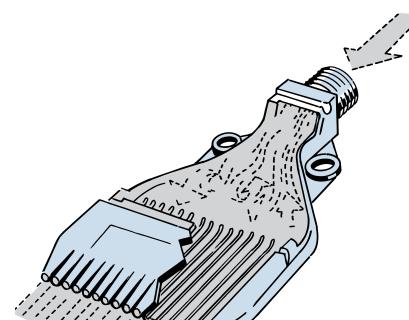

Typically, when uncontrolled compressed air is used, annoying, high-frequency hissing noises occur, which can affect or even harm hearing. These "noises" are produced by turbulences generated at the air outlet. Their intensity depends on the shape of the nozzle orifice and on the amount of inlet air pressure. Therefore, the stronger the output air jet needs to be, the higher the noise level, air consumption, and cost as a result.

The solution: Lechler multi-channel air nozzles, featuring a significantly reduced sound level, high blowing power, and low air consumption.

Air nozzles

The performance of multichannel air nozzles is based on partitioning the air inflow into single air jets. A total of 16 air channels, arranged to ensure optimum flow conditions, provides for a uniform, straight, and powerful overall air jet. In comparison to singlehole air nozzles, the advantages are as follows:

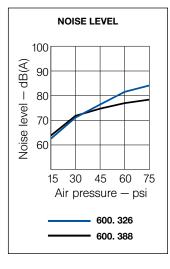
- by up to 12 dB
- the same blowing force
- Lower air consumptionBetter blowing effect over
 - a greater distance
- Lower operating costs

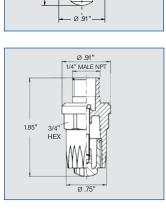


Comparison of a conventional, single-hole nozzle with the Lechler multi-channel round jet nozzle type 600.326

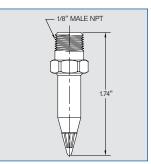
Lechler multi-channel round jet nozzle

Conventional single-hole nozzle


www.LechlerUSA.com


Provides focused blasting power with minimal air consumption and noise. Round configuration excellent for spot blasting, clearing holes, or use on hand guns.

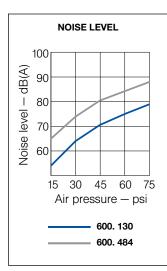
600. 326. 3W. BC (Zinc)



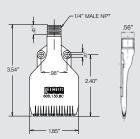
MALE NPT

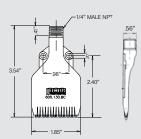
Round WHISPERBLAST gives a focused blast with low air consumption. Best for hand gun use.

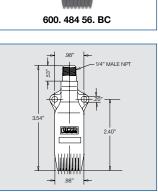
	Ordering no.			Description		C (Standard		Approx.	Max.	Max.			
Туре	Ma	aterial n	0.	Connection			(Otanuaru		. VVt.	Pressure	Temp.		
	30	say 5K	Zinc 3W	Male NPT ¹ /8 ^{" 1} /4 ["]		15 psi	30 psi	45 psi	60 psi	75 psi	(lb.)		۴F
600. 326	0	0	-	BA BC	Round WHISPERBLAST	5.3	8.8	12.4	16.0	19.5	0.05	100 psi	120
600. 326	-	-	0	- BC	Round WHISPERBLAST	5.3	8.8	12.4	16.0	19.5	0.10	100 psi	200
600. 388	0	-	-	BA -	MiniBlast	3.0	4.6	6.2	7.8	9.4	0.14	100 psi	120


Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	600.326	+	5K	+	BC	=	600. 326. 5K.

Please see the Lances and Nozzle Headers section for various configurations to mount your WHISPERBLAST air nozzles beginning on page 143.


вс

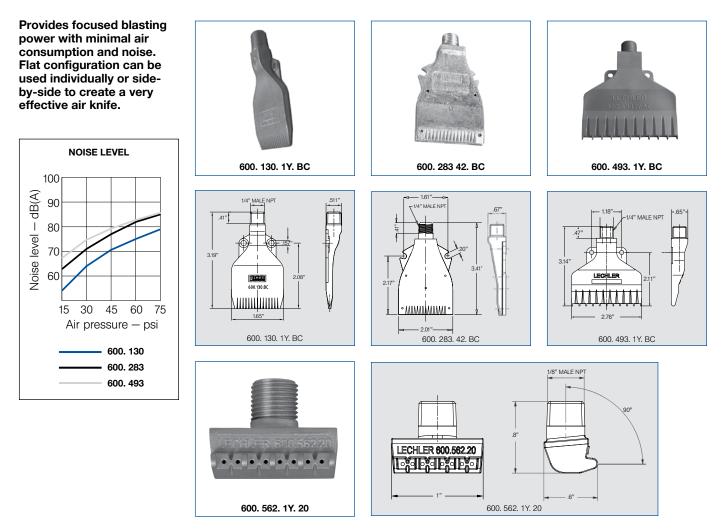

Provides focused blasting power with minimal air consumption and noise. Flat configuration can be used individually or sideby-side to create a very effective air knife.



While standard plastic WHISPERBLAST nozzles come in a distinctive blue color, model 600.130.S2.BC is made from natural Polypro, a colorless material. Since no color dyes have been added to this model, it meets FDA requirements for use in food or pharmaceutical applications. See page 24.

Ordering no.				Description	Accessories				Approx.	Max.	Max.		
Туре	Mate	rial no.	Conne	ection			(Standard Cubic Feet per			Minute)	Wt.	Pressure	Temp.
	SS Natural PP	^{WO⊿} 56		Hose Barb			15 psi	30 psi	45 psi	60 psi	(lb.)		۴
600. 130	0	0	BC	-	Original flat WHISPERBLAST		6.5	10.8	14.9	19.1	.05	75 psi	120
600. 130	-	0	-	01	Flat WHISPERBLAST (1/4" Male NPT) w/accessories	Hose nipple (5/16" barb) Steel Extension (L=3.3")	6.5	10.8	14.9	19.1	.05	75 psi	120
600. 484	-	0	вс	-	Flat Mini-WHISPERBLAST		3.1	4.7	6.4	8.0	.03	75 psi	120

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	600. 130	+	56	+	BC	=	600. 130. 56. BC


Hose barb adapter: 600. 130. 30. 04 .00. 1

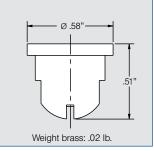
Please see the Lances and Nozzle Headers section for various configurations to mount your WHISPERBLAST air nozzles beginning on page 143.

Air nozzles

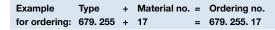
	Orde	ring no.		Description			ty for Air		Approx.	Max.	Max.
Туре	Mater	rial no.	Connection		(Stand	ard Cubic	Feet per	Minute)	Wt.	Pressure	Temp.
	316L SS 1 A	mnuimnly 42	Male NPT		15 psi	30 psi	45 psi	60 psi	(lb.)		۴
					1	- In a	1	1	(-)		
600. 130	0	-	- BC	Flat WHISPERBLAST	6.5	10.8	14.9	19.1	.05	75 psi	1000
600. 283	-	0	- BC	Aluminum flat WHISPERBLAST	8.5	13.5	18.6	23.8	.14	120 psi	400
600. 493	0	-	- BC	Flat WHISPERBLAST	11.1	16.9	22.7	28.5	.28	150 psi	1000
600. 562	0	-	20 -	Tangential air nozzle	-	5.3	-	-	.06	150 psi	1022

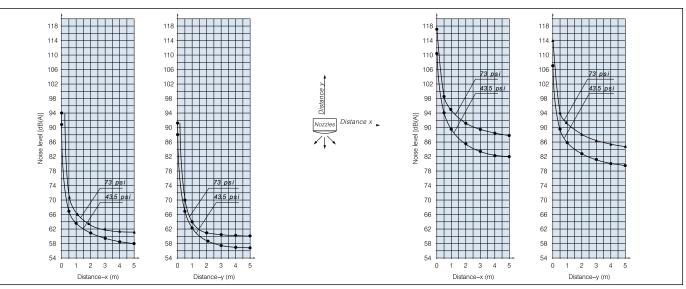
Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	600. 130	+	1Y	+	BC	=	600. 130. 1Y. BC

Please see the Lances and Nozzle Headers section for various configurations to mount your WHISPERBLAST air nozzles beginning on page 143.



Designed specifically to create a wide spray angle flat fan, with air or steam. Orifice size options allow for varying SCFM output for the same air input psi. For use with nozzle base and cap.


Applications:


- · Strip and web drying
- Liquid blow-off
- · Chip removal

¢	Orderin	<u> </u>		diam.	(1	Capaci Standard Cubic	ty for Air Feet per Minute)			aturated Steam	
Spray angle	Туре	Mat. SS 91E 17	. no. ^{Ssaug} 30	ui) Orifice o	7 psi	29 psi	73 psi	145 psi	7 psi	29 psi	73 psi	145 psi
70°	679.037	-	0	.047	.9	1.8	3.5	6.5	2.6	5.1	10.1	18.3
	679. 085	0	0	.051	1.2	2.4	4.7	8.7	3.5	6.8	13.4	24.4
	679. 117	0	0	.059	1.2	2.5	4.9	9.1	3.8	7.3	14.3	25.8
	679. 165	0	0	.071	1.5	3.0	6.1	11.1	4.4	9.0	17.6	31.5
	679. 255	0	0	.083	2.1	4.3	8.5	15.7	6.2	12.6	24.7	44.5
	679. 365	0	0	.110	3.7	7.5	15.0	27.4	11.0	22.0	43.1	77.7
	679. 415	0	0	.142	6.0	12.0	24.0	43.9	17.6	35.1	69.1	124.8
	679. 495	0	0	.169	9.2	18.3	36.6	67.1	27.3	54.6	106.8	192.6

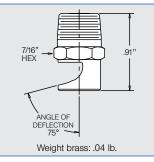
Bases and Cap for Mounting

Inlet Male NPT	Outlet Male	Part No.					
1/4"	11/16 x 16	065. 215. XX. 10	Standard Materials: 17 316 SS				
3/8"	11/16 x 16	065. 211. XX. 10	30 Brass				
Сар				BASE	TIP	CAP	
To fit 11/16x	16	069. 000. XX. 00	Other materials are available. See page 127.	JASL			Blow-off tip with split eyelet connecto

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

П

125


Air nozzles

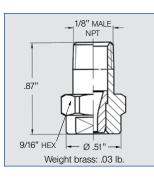
Wide-angle, powerful air jet.

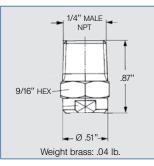
- Applications:Blowing off liquids
- Cooling
- Reheating
- Drying

X	Or	dering	no.		diam.		(Stand	Capacity ard Cubic I		linuto)			Capac	ity for Satu (lb/hr		ım	
\triangleleft	Туре	Mat.	. no.	Conn.	dă		(Otariua		eer per iv	intute)				(10/11)		
Spray angle		316 SS 17	06 Brass	Male NPT 1/8"	Orifice (in.)	10 psi	20 psi	40 psi	60 psi	80 psi	100 psi	10 psi	20 psi	40 psi	60 psi	80 psi	100 psi
70°	686. 408	0	0	BA	.039	.4	.5	.8	1.1	1.4	1.7	1.8	2.4	3.5	4.6	5.7	6.6
	686. 488	0	0	BA	.051	.6	.9	1.4	1.9	2.4	2.9	2.6	3.7	5.7	7.5	9.3	11
	686. 528	0	0	BA	.059	.9	1.1	1.9	2.5	3.2	3.8	3.5	5.1	7.5	10	12	14
	686. 568	0	0	BA	.067	1.0	1.5	2.4	3.4	4.2	5.0	4.6	6.6	10	13	16	19
	686. 608	0	0	BA	.075	1.3	1.8	3.0	4.2	5.2	6.2	5.7	8.2	13	17	20	24
	686. 688	0	0	BA	.094	2.2	2.9	4.7	6.6	8.3	9.9	9.0	13	20	26	32	37
	686. 728	0	0	BA	.106	4.0	5.0	7.9	11	14	17	9.9	16	24	32	39	47
	686. 808	0	0	BA	.134	6.1	8.0	13	18	23	27	16	25	39	50	62	74

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	686. 408	+	17	+	BA	=	686. 408. 17. BA

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.


Powerful air jet, producing small but targeted impact patterns.


Applications:

 Targeted blowing out and blowing off

Series 544.110 - 544.400

Series 544.480 - 544.800

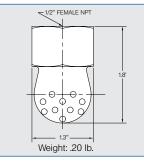
OI	rdering no).		diam.	(Capaci Standard Cubic	ty for Air Feet per Minute)			aturated Steam	
Туре	Mat. no.	Con	ın.		(, i eet per minute)		(10	"m)	
	ss 808 16	Male N 1/8"	NPT 1/4"	.iu)	10 psi	25 psi	50 psi	75 psi	10 psi	25 psi	50 psi	75 psi
544. 360	0	BA	вс	.041	.5	.8	1.1	1.7	1.7	2.5	3.6	5.3
544. 400	0	BA	BC	.051	.8	1.3	1.7	2.6	2.6	3.9	5.5	8.2
544. 480	0	BA	BC	.052	1.0	1.5	2.0	3.0	3.1	4.5	6.4	9.3
544. 560	0	BA	BC	.065	1.5	2.3	3.1	4.6	4.7	7.0	9.9	14.7
544. 640	0	BA	BC	.082	2.5	3.8	5.2	7.8	7.9	11.7	16.6	24.5
544. 720	0	BA	BC	.104	4.0	6.0	8.2	12.4	12.5	18.6	26.4	39.0
544. 800	0	BA	BC	.130	6.3	9.5	12.9	19.3	19.7	29.1	41.1	60.9

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	544. 360	+	16	+	BC	=	544. 360. 16. BC

A listing of alternatives for various assembly possibilities is shown in the Accessories section beginning on page 127.

127

Air nozzles



Powerful air jet with 40 individual bore holes.

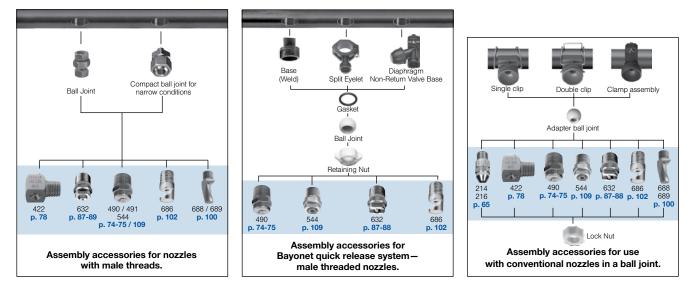
Applications:

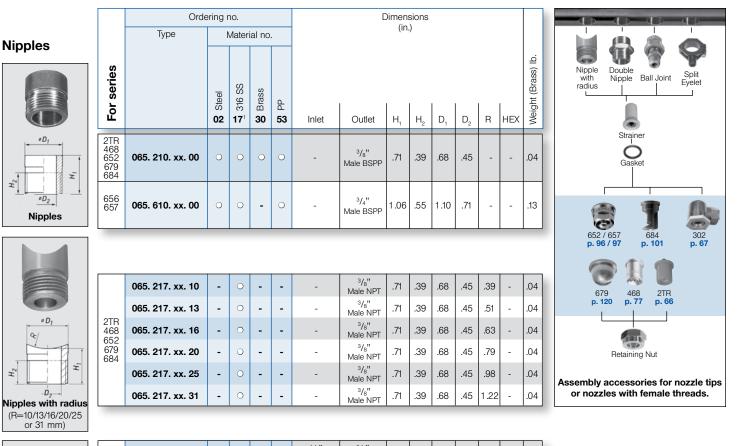
- Injection of steam into liquidsInjection of compressed air
- into bulk goodsGas injection (acid and
- neutralization baths)

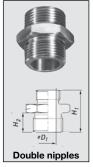
¢		ring no. Mat.no. ගු		ifice diam.	(Capaci Standard Cubic	ty for Air Feet per Minute)			aturated Steam //hr)	
Spray angle		^{сос} 16	NPT 1/2"	ii. (in.)	15 psi	29 psi	44 psi	73 psi	15 psi	29 psi	44 psi	73 psi
240°	540. 909	0	BH	.032	13.4	20.1	26.8	40.2	14.7	21.7	29.1	43.6
	540. 989	0	BH	.039	20.9	31.4	41.8	62.7	22.9	33.7	45.4	67.9
	541.109	0	BH	.059	49.0	73.5	98.0	147.0	53.8	79.3	106.6	159.4
	541. 189	0	BH	.079	76.3	114.5	152.6	229.0	83.9	123.7	166.3	248.6
	541. 239	0	BH	.091	98.4	147.6	196.8	295.2	107.5	158.5	213.2	318.8

Example	Туре	+	Material no. +		Conn.	=	Ordering no.
for ordering:	540.909	+	16 +	I	BH	=	540. 909. 16. BH

For various configurations to mount your tank cleaning nozzle, see the Lances and Nozzle Headers section beginning on page 143.

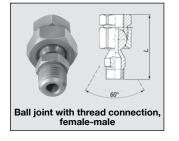



Nipple Double Base (Threaded) Base (Weld) Diaphragm with radius Ball Joint Split Eyelet Dovetail Nipple Nipple Split Evelet Non-Return Valve Base Strainer Strainer with Gaşket Strainer Gasket Gasket 63 468 **p. 77** 2TR p. 66 652 679 684 p. 96-97 p. 120 p. 101 302 **p. 68** 422 **p. 80** 652 / 656 684 p. 96 / 94 p. 101 679 468 2TR 302 p. 90-91 p. 92-93 p. 67 p. 120 p. 77 p. 66 Retaining Nut 65 Retaining Nut Retaining Nut Assembly accessories Assembly accessories for nozzle tips or for nozzle tips Assembly accessories for nozzle tips. nozzles with female threads. with dovetail design. Bayonet quick release system.

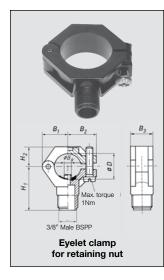

Assembly accessories for nozzle tips or nozzles with female threads

Assembly accessories for nozzles with male threads

	065. 215. xx. 11	-	0	0	-	¹ /4" Male NPT	³ / ₈ " Male NPT	1.44	.56	-	-	-	11/16 .06
2TR 468	065. 215. xx. 12	-	0	0	-	³ / ₈ " Male NPT	³ /8" Male NPT	1.38	.50	-	-	-	11/16 .06
652 679 684	065. 215. xx. 10	-	0	0	-	¹ /4" Male NPT	¹¹ / ₁₆ "-16 Male NPT	1.44	.56	-	-	-	11/16 .06
	065. 211. xx. 10	-	0	0	-	3/8" Male NPT	¹¹ / "-16 Male NPT	1.25	.50	-	-	-	11/16 .06
656 657 664 665	065. 611. xx. BK	-	0	0	-	³ / ₄ " Male NPT	3/ ₄ " Male NPT	1.65	.55	.71	-	-	1-1/4 .20


Example	Туре	+	Material no. (xx)	=	Ordering no.
for ordering:	065. 215. xx. 11	+	17	=	065. 215. 17. 11

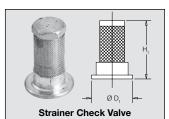
1) We reserve the right to deliver material 316 SS or 316L SS, if we show the material code 17.

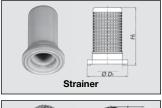

Ball joints

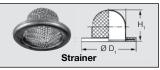
Orderin	ig no.						ins			
Туре	Ma	aterial n	0.			(111.)				
	03 SS/316 SS	33 SS	rass							Weight (Brass) Ib.
	ਲ 16	ਲ 16		Inlet	Outlet	D ₁	D ₂	Largest HEX	L	Weig
092. 022. xx. BE. BD	-	0	-	^{1/} 4" Female NPT	^{3/} 8" Male NPT	-	-	1-1/16	2.51	.18
091. 124. xx. BE. BF	-	0	0	³ /8" Female NPT	³ /8" Male NPT	-	-	1-1/8	2.10	.19
	Type 092. 022. xx. BE. BD	092. 022. xx. BE. BD -	Type Material n S S S S S S S S S S S S S	Type Material no. S S S 95:000 S S S 16 16 30 092. 022. xx. BE. BD - ○ -	Type Material no. SS SS <t< td=""><td>Type Material no. SS SS</td><td>Type Material no. SS SS</td><td>Type Material no. SS SS</td><td>Type Material no. SS <t< td=""><td>(in.) Type (in.) Type Material no. Signature Signat</td></t<></td></t<>	Type Material no. SS SS	Type Material no. SS SS	Type Material no. SS SS	Type Material no. SS SS <t< td=""><td>(in.) Type (in.) Type Material no. Signature Signat</td></t<>	(in.) Type (in.) Type Material no. Signature Signat

Example	Туре	+	Material no. (xx) =	Ordering no.
for ordering:	092. 022. xx. BE. BD	+	16 =	092. 022. 16. BE. BD

Split eyelet

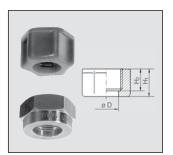

	Orderin	ig no.							Di	mensic (in.)	ns				
	Туре		terial Color												
For series		15 Nylon (Black)	55 PP (Clear)	B PVDF (Blue)	Screw (Material)	Pipe	Drill hole diameter	B _R Ø	B" ø	В ₁	B ₂	B ₃	H ₁	H ₂	Weight (Nylon)
	090. 053	0	0	0		³ / ₈ "	¹ / ₄ "	.24	.24	.75	.87	.73	1.36	.57	.05
2TR 302	090. 003	0	0	0	(0	1/2"	¹ / ₄ "	.24	.25	.84	.94	.73	1.44	.65	.05
468 652 679	090. 013	0	0	0	303 SS	³ / ₄ "	⁵ / "	.31	.31	.96	1.05	.87	1.56	.69	.06
684	090. 023	0	0	0		1"	7/_" 16	.42	.43	1.18	1.22	.87	1.73	.83	.07
	090. 033	0	0	0		1 ¹ / ₄ "	¹ /2"	.51	.51	1.34	1.40	.99	1.89	.99	.09


 $B_{R}^{*} \phi = Spigot \text{ diameter} \\ B^{**} \phi = Recommended \text{ bore diamete}$


Example	Туре	+	Material no.	=	Ordering no.
for ordering:	090. 053	+	51	=	090. 053. 51

Strainers

	u	Orde	ring no						Dimen (in			
ies	option	Туре	Ma	aterial r	ıo.		psi)		un L	.)	1	
For series	Valve c		Ianom 26	00 Brass	WOd 56	Color	Opening pressure (psi)	Mesh size	Mesh opening	H,	D ₁	Weight (Brass) Ib.
xxx.32x- xxx.44x xxx.32x-	ck valve	065. 265	-	-	0	Blue	8	50	.011	.81	.58	.004
xxx.44x xxx.48x- xxx.56x	With check valve	065. 266	-	-	0	Red	8	24	.026	.81	.58	.004
xxx.32x- xxx.44x xxx.32x-	check valve	065. 257	-	-	0	Blue	-	50	.011	.81	.58	.004
xxx.44x xxx.48x- xxx.56x	No che	065. 256	-	-	0	Red	-	24	.026	.81	.58	.004
xxx.32x- xxx.44x	No check valve	065. 252	0	-	-	-	-	80	.007	.31	.58	.004


Example Туре + Material no. = Ordering no. for ordering: 065. 260 + 30 = 065.260.30

, z s s Type			Ordering no.							
		Mater	ial no.	(in.)						
For series For nozzle	55	L Copper- filled fiber	b. Aramid fiber	2 Soft rubber	D	Weight (oz.)				
468/652 679/684 retaining nut 3/8" and 11/16" 065. 24	.0 0	-	0	0	.59	.005				
656/657 retaining nut 3/4" 065. 64	.0 -	-	0	-	.94	.018				

Gaskets

Retaining nuts

* POM and PVDF not recommended for nuts for Series 548, High Pressure Tips.

134

Example Туре + Material no. = Ordering no. for ordering: 065. 240 + 55 = 065. 240. 55

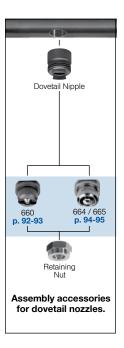
		С	rderir	ng no.						ġ			
es	Туре			Materi	al no.					(in.)			
series		303 SS	316SS	316L SS	Brass	POM	PVDF	_		I	I	I	Weight (Brass)
For		ଞ 16	ਲ 17	ਲ 1Y	й 30	전 56	⊆ 5E	For thread	H ₁	H ₂	D	Hex	Weig
2TR 468 548* 652	065. 200	0	0	-	0	0	0	³ / ₈ " BSPP	.57	.40	.50	.87	.06
660 679 684	069.000	0	-	0	0	-	-	^{11/} 16"-16	.57	.40	.50	.87	.06
656/664	065. 600	0	0	-	0	-	0	³ / ₄ " BSPP	.63	.51	.79	1.26	.13

+ Material no. = Ordering no. Example Туре for ordering: 065. 200 + 17

= 065. 200. 17

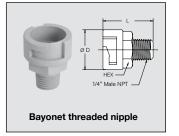
Dovetail nipples

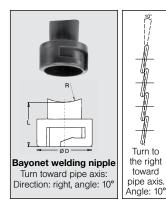
	Orderin	ig no.				Dimen (in			
	Туре	Ма	terial	no.					
For series		SS E0E 16	316 SS 17	00 Brass	For thread G ₁	H,	D ₁	Hex	Weight (Brass) Ib.
000	000 014		0	-	37 11 0000	.71	.65		05
660	066. 011	-	0	-	3/8" BSPP	./]	.05	-	.05
664/665	066. 410	-	0	-	³ / ₄ " BSPP	1.06	1.10	-	.14


ExampleType+Material no.=Ordering no.for ordering:066. 410+17=066. 410. 17

Retaining nuts

	Orderir	ig no.												
	Туре	Ма	terial	no.		(in.)								
For series		SS EOE 16	SS 916 17	30 Brass	For thread G ₁	Н,	D ₁	Hex	Weight (Brass) Ib.					
660	065. 200	0	0	0	³ / ₈ " BSPP	.51	-	1/_"	.06					
664/665	065. 600	0	0	0	³ / ₄ " BSPP	.51	-	1 ¹ / ₄ "	.13					


Example	Туре	+	Material no.	=	Ordering no.
for ordering:	065. 200	+	17	=	065. 200. 17



Dovetail nozzles have an automatic alignment guide which requires a matching dovetail base. Once the base is set, the nozzle can be removed and replaced without need to readjust the alignment. Nozzle is secured to the base with a retaining nut.

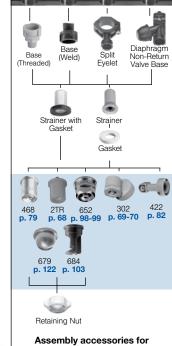
Bayonet bases (split eyelets, diaphragm non-return valve, threaded nipple, and welding nipple)

ır series	Ordering no.	Material	Conn.		Dimensions (in.)		Weight (Ib.)	
For				L		HEX	ž	
302 bay. 422 bay. 2TR 468 652 679 684	090. 075. 53. 00	PP	¹ / ₄ " Male NPT	1.29	1.02	¹³ / ₁₆	.01	

For series	Ordering no.	Material	L	Dimensions (in.) R	; D	Weight (Ib.)
302 bay. 422 bay. 2TR	095. 016. 53. 08. 05	PVC	.98	.63	1.02	.01
468 652 679 684	095. 016. 50. 08. 05	PP	.98	.63	1.02	.01

Dimensions

Weight (Ib.)


.05

.06

.07

.11

.12

nozzle tips or nozzles with female threads. Bayonet quick release system.

A REAL TO A			orac	Jing	110.										Din	2	5115		
6 2-00		Туре	Ν	Mater (Co).	Conn.			ar	e (psi)	(isd)				(in.)			
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	or series		Nylon (Black)	PP (Clear)	PVDF (Blue)	POM (Black)	iet	Screw (Material)	2	Drill hole diameter	ng pressure	Closing pressure (psi)							
	For		51	립 53]∠ 5E	0 56	Bayonet	Screw	Pipe ø	Drill h	Opening	Closin	H ₁	H ₂	B _R * Ø	B [™] Ø	В,	B ₂	B3
	302 bay. 422	090. 003	0	0	0	-	KA			⁹ / ₃₂ "	-	-	1.95	.65	.24	.25	.84	.94	.73
Eyelet clamp	bay. 2TR 468 652	090. 013	0	0	0	-	KA	304 SS	³ /4"	⁵ / ₁₆ "	-	-	2.07	.69	.31	.31	.97	1.04	.87
with bayonet quick release	679 684	090. 023	0	0	0	-	KA	.,		⁷ / ₁₆ "	-	-	2.25	.83	.42	.43	1.18	1.22	.87
	302 bay. 422 bay. 2TR	065. 272	-	-	-	0	кн	t SS	¹ / ₂ "	¹ / ₄ "	12	9	2.32	3.31	.24				
	468 652 679 684	065. 272	-	-	-	0	KL	304	³ / ₄ "	²⁵ / ₆₄ "	12	9	2.60	3.55	.38				
BR		= Spigot d				dior	notor												

 $B^{**} \phi$ = Recommended bore diameter

Ordering no.

+ Material no. + Conn. = Ordering no. Example Туре for ordering: 090.003 + 51 = 090.003.51.KA + KA

with bayonet quick release

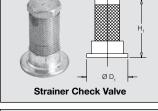
_ø1.3" 2.7"

Diaphragm non-return valve

н,

136

Strainers

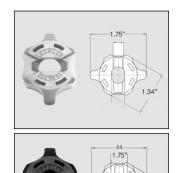

Г

r nozzle size	Ordering no.	Material	Strainer mesh	Color		Dimensions (in.)						
For			Stre		H ₁	H ₂	D ₁	D ₂	Weight (Ib.)			
xxx.32x- xxx.44x	065. 268. 7J	Santoprene	50	Blue	.85	.10	.71	.44	.004			
xxx.48x- xxx.56x	065. 269. 7J	Santoprene	25	Red	.85	.10	.71	.44	.004			

u	Orde										
pti	Туре	M	aterial r	10.		(isd		(in	.)		
Valve o		lanoM 26	06 Brass	WOd 56	Color	Opening pressure (p	Mesh size	Mesh opening	H ₁	D ₁	Weight (Brass) Ib.
sck valve	065. 265	-	-	0	Blue	8	50	.011	.81	.58	.004
With che	065. 266	-	-	0	Yellow	8	24	.026	.81	.58	.004
eck valve	065. 257	-	-	0	Blue	-	50	.011	.81	.58	.004
No che	065. 256	-	-	0	Red	-	24	.026	.81	.58	.004
No check valve	065. 252	0	-	-	-	-	80	.007	.31	.58	.004
	No check value No check value With check value Value option	No check valve Vith check valve 065. 265 065. 266 065. 256 000 000	Ooes 20 Age 0065.265 - Age 0065.266 - Age 0065.257 - Age 0065.256 -	Octobe Octobe<	Image: Constraint of the system Image: Consten Image: Constraint of the system	Part No Control Control <t< th=""><th>200 200 200 200 200 2000</th><th>No No No<</th><th>No No No<</th><th>No No No<</th><th>No No No<</th></t<>	200 200 200 200 200 2000	No No<	No No<	No No<	No No<

Example	Туре	+	Material no.	-	 Ordering no.
for ordering:	065. 260	+	30	-	= 065. 260. 30

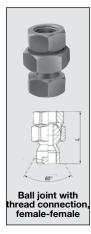
Strainers



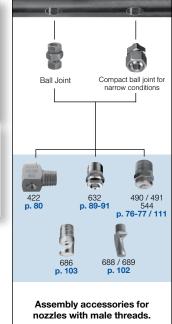
Gaskets

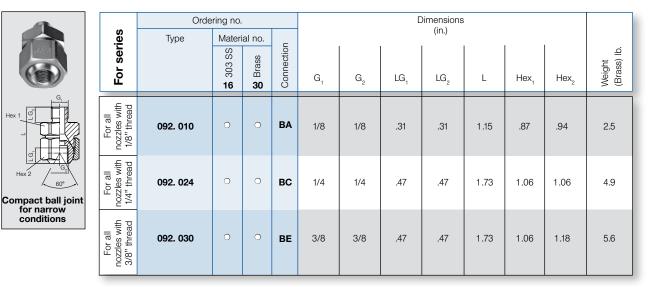
Ordering no.		Description						
Type Mat.nd dq qq Type 73 7	prene		Weight (oz.)					
095. 015. 7J. 01. 65	Santoprene	Replacement gasket for use with strainer	.016					
065. 242. 73. 00. 00	Rubber	Replacement gasket	.016					

Bayonet quick release retainer caps incl. gasket 065.242.73 (rubber)


For series	Ordering no.	Material	Color	Weight (oz.)
	065. 202. 56. 00	POM	Red	.016
652 679	065. 202. 53. 00	PP	Gray	.016
	065. 202. 5E. 00*	PVDF	Blue	.016
2TR 468	065. 202. 56. 11	POM	Black	.016
652 684	065. 202. 53. 11	PP	Gray	.016

* does not work with 090.075.53.00.0 base, incl. gasket 065.242.7A (viton)





	Ordering n	0.		Dimensions									
	Туре	Mater	ial no.			(in.)							
For series		SS E0E 16	30 Brass	Inlet	Inlet Outlet D ₁ D ₂ Largest L								
422	092. 010. xx. BB. BB	0	0	1/8" Female NPT	1/8" Female NPT	-	-	7/8	1.70	.09	1		
490 544 632 686	092. 020. xx. BD. BD	0	0	¹ /4" Female NPT	¹ /4" Female NPT	-	-	1-1/16	2.37	.13			
686 688	092. 030. xx. BF. BF	0	0	³ /8" Female NPT	³ /8" Female NPT	-	-	1-1/8	2.23	.18			
	ample Type		+	Material n		orderin	-						
TOP	ordering: 092.010. x	х. BB. I	BB +	16	= 0	92.01	J. 16.	BB. BB					

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	092.265	+	16	+	KA	=	092. 265. 16. BA

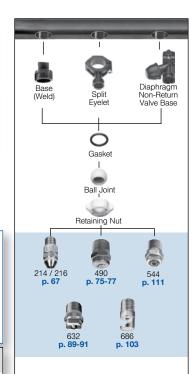
Bayonet bases (split eyelets, diaphragm non-return valve, and welding nipple)

ľ

Turn to

the right

toward


pipe axis.

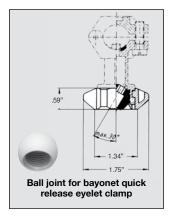
Angle: 10°

For series	Ordering no.	Material	L	Dimensions (in.) R	D	Weight (Ib.)
302 bay. 422 bay. 2TR	095. 016. 53. 08. 05	PP	.98	.63	1.02	.01
468 652 679 684	095. 016. 50. 08. 05	PVC	.98	.63	1.02	.01

	For series	Туре		Aater (Coar) HD (Clear)	al no	95 POM (Black)	Bayonet	Screw (Material)	Pipe ø	Drill hole diameter	Opening pressure (psi)	Closing pressure (psi)	H ₁	H ₂	Din B _R	nensio (in.) B ^{**}	B ₁	B ₂	B ₃	Weight (Ib.)
<i>z</i> ,	302 bay. 422	090. 003	0	0	0	-	KA			⁹ / ₃₂ "	-	-	1.95	.65	.24	.25	.84	.94	.73	.05
Eyelet clamp	bay. 2TR 468 652	090. 013	0	0	0	-	KA	303 SS	³ /4"	⁵ / ₁₆ "	-	-	2.07	.69	.31	.31	.97	1.04	.87	.06
with bayonet quick release	679 684	090. 023	0	0	0	-	KA			7/_"	-	-	2.25	.83	.42	.43	1.18	1.22	.87	.07
	302 bay. 422 bay. 2TR	065. 272	-	-	-	0	кн	SS	1/2"	1/4"	12	9	2.32	3.31	.24					.11
	468 652 679 684	065. 272	-	-	-	0	KL	303	³ / ₄ "	²⁵ / ₆₄ "	12	9	2.60	3.55	.38					.12

Assembly accessories for Bayonet quick release system male threaded nozzles.

 $B_{R}^{*} = Spigot diameter$ Stat. ·Н, $B^{**} \phi = Recommended bore diameter$ Ĥ.


2.7"
Diaphragm
non-return valve
with bayonet
quick release

ø1.3"

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	090.003	+	51	+	KA	=	090. 003. 51. KA

Ball joint system for nozzles with 1/8" or 1/4" female thread.

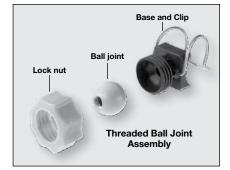
	C	ordering no	Color	Weight		
	Type Mat. no. Connection			(oz.)		
es			Female BSPT			
For series		JOVA 2E	1/8"	¹ / ₄ "		
For all nozzles with 1/8" or 1/4" female thread	092. 150	0	АВ	AD	Blue	.064

Example	Туре	+	Material no.	+	Conn.	=	Ordering no.
for ordering:	092. 150	+	5E	+	AB	=	092. 150. 5E. AB

Retaining nut with gasket for ball joint

For series	Ordering no.	Material	Color	Weight (oz.)
For ball joint	092. 150. 5E. 00	PVDF	Blue	.16

O-ring



Allows quick installation of conventional nozzles onto a metal or plastic header pipe. For pipe sizes of 1", 1-1/4", 1-1/2", and 2". Requires drilling of a 21/32" hole in the pipe, no threading required. Adapter clamps to pipe. For use with male NPT nozzles of sizes 1/8", 1/4", 3/8", and 1/2".

Easy Clip assembly nozzle tip (see page 101) can be replaced with a threaded ball joint, for added positioning flexibility for mounting 1/4" and 3/8" nozzles. Adapter and ball joint can both stand up to many acids and caustics, at temperatures up to 180°F.

Applications:

- · Phosphating lines · Parts washers and degreasing
- Conveyor washing
- Dust suppression

Single clip with o-ring

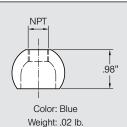
Ordering no.	Material	For Pipe		Weight (Ib.)
		Tap Ø	Size	
092. 080. 53. 00	PP	.63"	1"	.08
092. 081. 53. 00	PP	.63"	1-1/4"	.09
092. 082. 53. 00	PP	.63"	1-1/2"	.11
092. 083. 53. 00	PP	.63"	2"	.11

Double clip with o-ring

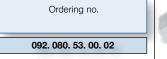
Ordering no.	Material	For Pipe		Weight (lb.)
		Tap Ø	Size	
092. 090. 53. 00	PP	.63"	1"	.08
092. 091. 53. 00	PP	.63"	1-1/4"	.09
092. 092. 53. 00	PP	.63"	1-1/2"	.11
092. 093. 53. 00	PP	.63"	2"	.11

Clamp assembly with o-ring

Ordering no.	Material	For Pipe		Weight (lb.)
		Tap Ø	Size	
090. 023. 53. 43. 10	PP	.63"	1"	.08
090. 033. 53. 43. 10	PP	.63"	1-1/4"	.09
090. 043. 53. 43. 10	PP	.63"	1-1/2"	.11


Replacement pipe o-ring

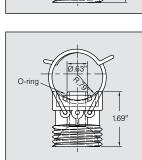
Ordering no. 092.015.6C.04.32

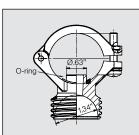


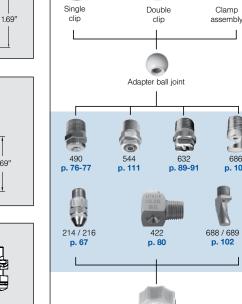
Adapter ball joint

Ordering no.	Material	For Nozzle		
		Connection Female NPT	Series	
092. 080. 53. 00. 01	PP	blind nozzle	blind nozzle	
092. 080. 53. BD. 01	PP	1/4"	490, 544, 632, 686	
092. 080. 53. BF. 01	PP	3/8"	490, 632, 686	

Lock nut




Weight: .03 lb.


2

686

p. 104

Lock nut Assembly accessories for use with conventional nozzles in a ball joint.

Lances and nozzle headers

Sanitary Retractable Lances Standard Flanged Lances Tank Cleaning Lances STAMM® Showers Pneumatic Atomizing Air Blowoff Quick Disconnect Flat Fan Plastic Specialty

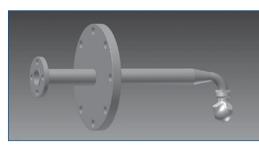
144

1-800-777-2926

Fabricated Lances

Whereas a header or spray bar is a pipe containing multiple nozzles, a lance is a pipe in which one nozzle is attached to the end of it (see photos). The lance can then be inserted into the target area. This could be a tank, a larger pipe, or a gas or fluid system. The purpose of the lance is to spray at a specific target (such as to clean a tank) or inject fluid into the system (such as gas conditioning). Lechler can fabricate a nozzle lance to perform any spray requirement you may have. Here are some examples:

Sanitary retractable lance	Applications Tank cleaning 	 Features Manually inserts and retracts into tank for a non-CIP sanitary application Accepts a variety of nozzle types Polished finish for sanitary applications
Industrial retractable lance	Applications Fluid injection 	 Features Manually inserts; retracts into vessel or pipe Flexibility; accepts a variety of nozzles, adjusts to various size flanges; has variable insertion lengths
Standard flanged lance	Applications Tank cleaning Fluid injection 	FeaturesInserts into tank for CIP applicationsAccepts a variety of nozzle types
Standard flanged Sanitary Lance	Applications Tank cleaning Fluid injection 	 Features Inserts into tank for CIP applications Accepts a variety of nozzle types Materials and connections suitable for sanitary applications
Pneumatic Twin Fluid Iance	 Applications Gas treatment Spray drying Fluidized bed granulation Atomizing of liquids to small droplets Combustion of liquids 	 Features Two styles: solid jet atomization and pre-atomization Solid jet atomization (for higher viscosity fluids) Single atomization of solid fluid jet Maximum free passage (less clogging risk) Suitable for medium to high viscosity fluids Pre-atomization (for highest atomization efficiency) Atomization of previously atomized cone spray Finest droplets possible due to double atomization



Lances

Custom fabricated for your application

ANSI flanged lance

Applications

Tank cleaningCIP applications

Features

- Accepts a variety of sizes
- Flanged connection for more permanent installation of nozzle and lance
- 90° elbow allows for side entry

Tri-clamp connection lance

Branched flanged lance

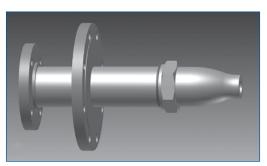
ApplicationsTank cleaning

Fluid injection

Features

- Accepts a variety of nozzles
- Quick disconnect for easier use in non-CIP applications

Applications


- Tank cleaning
- Chemical processing

Features

- · Accepts a variety of nozzles
- Dual arms allow spraying in multiple directions

CenterJet full cone lance

Applications

- Surface spraying
- Quench cooling
- Fire suppression
- Chemical processing
- CIP applications

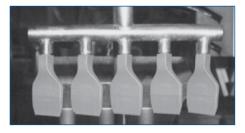
Features

- · Accepts a variety of nozzle types
- Available in various materials for maximum chemical resistance

Fabricated Headers - Our Specialty

In addition to single nozzles and accessories, Lechler can make fabricated headers in any size or shape for any application you may have in mind. With our knowledge of nozzles and applications, we can design and build a header specifically to perform the task you need for your process. Here are some examples of systems we have designed over the years:

STAMM[®] Headers (without a self-cleaning device)


AirMist Atomizing Headers

ViscoMist Atomizing Headers

Air Blowoff Headers

Applications

- Cleaning
- Coating

Features

- Renowned STAMM® quality
- Self-aligning nozzles
- Easy nozzle replacement

Applications

- Coating
- Lubricating
- Humidification

Features

- AirMist atomizing nozzles
- Optional pneumatic valves
- for operational control

 Sprays water-like fluids
- Simplifies installation

Applications

- Coating
- Lubricating

Features

- ViscoMist atomizing nozzles
- Standard pneumatic valves for operational control
- Sprays more viscous fluids (e.g. oils, syrups)
- Simplifies installation

Applications

- Air blowoff
- Cooling
- Drying

Features

- WhisperBlast air nozzles
- ABS Plastic header pipe

Custom fabricated for your application

Flat Fan Nozzle Headers

Applications

- Cleaning
- Coating
- Cooling
- Lubricating

Features

- · Any style of flat fan nozzles
- Threaded tip (with base and cap)Split eyelet
- (with base and cap)

Full Cone Nozzle Headers

Quick Disconnect Nozzle Headers

Applications

- Cleaning
- Dust suppression
- Surface spraying

Features

- · Axial or tangential full cones
- Nozzles cover an area; target does not need to move through spray to get covered

Applications

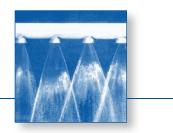
- Surface treatment
- Parts washing
- Phosphating lines

Features

- Easy Clips clamp to pipeSplit eyelets tighten
- around pipe
- Twistloc nozzles apply with a hand twist

Custom Specialty Headers

Applications

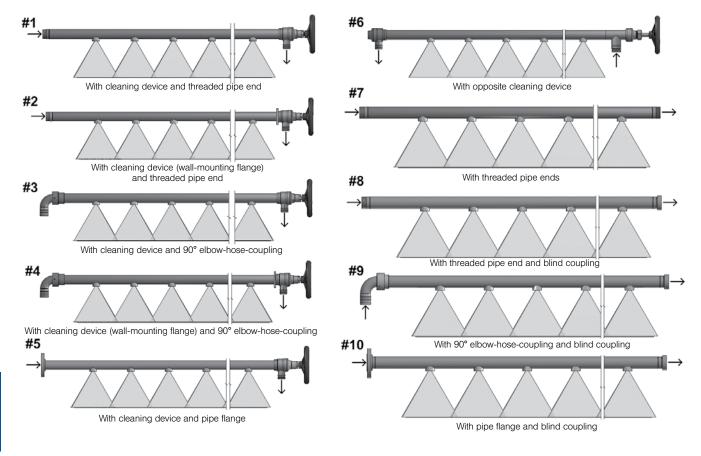

- Foam control
- (circular header)Surface spraying (inverted U header)
- Poultry processing
- (custom-shaped header)

Features

- Custom-made for application
- Nozzles aimed only at target regardless of header shape

STAMM[®] shower headers with built-in cleaning device

Engineered and manufactured by Lechler Inc. in the USA under license by the STAMM® Company in Germany, these shower headers with built-in cleaning device are recognized worldwide as the original "brush and flush" shower system.


Shower pipe and nozzles remain clog-free due to the unique flush system design. A simple turn of the handwheel sweeps contaminants away from the nozzle orifices and directs the debris down the flush-out valve. Since these showers eliminate costly down time for cleaning, they are especially cost-effective in applications subject to high fluid contamination. Some features of the self-

- cleaning shower system are:
 Header pipe available in sizes from 1¹/₂" to 6" in diameter.
- Contaminants flushed via special valve, preventing them from clogging orifices or reaching showered surface.
- System accommodates wide range of flow rates.
- Stainless steel construction throughout.
- Highly efficient, interchangeable nozzles are selfaligning.
- Systems are tailored to your specific application.

Refer to the next page for a selection of nozzles specifically designed for use in STAMM[®] showers.

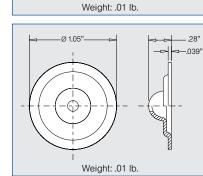
Standard shower models (Other configurations also available; note that models #7-10 have no cleaning device)

Nozzles for STAMM[®] shower headers Series 626 / 5SW

28'

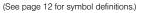
.039"

Designed specifically for STAMM[®] shower headers, these nozzles can serve as replacements or to change the flow rate of an existing unit. Self aligning when used with STAMM[®] or Lechler bases. 317 LN stainless steel construction for long service life. Available in 60°, 30°, and 15° flat fans or 0° solid stream ("needle jet") versions.


Applications:

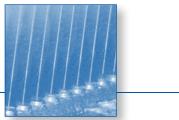
- For use on STAMM® showers
- Paper production
- Belt filter press cleaning in wastewater treatment

¢0°

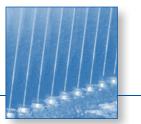


-ø 1.05"-

Notes: Also available upon request are: (1) nozzles with other flow rates and (2) solid stream nozzles (0°) with a ruby tip orifice. The number in the Equiv. Orifice Diam. column represents the Nozzle # and spray angle stamped on each nozzle; e.g., the nozzle stamped 1.0 / 60 refers to 626.364.1F.37. Lechler has blank shower nozzles with no orifices which can be used on STAMM® showers when a particular nozzle opening needs to be blocked. The part number for this blank nozzle is 006.261.1F.00.


∢	Ordering no.	Equiv. Orifice Diam.	Flow Rate (Gallons Per Minute)						
Spray angle		(mm)	40 psi	60 psi	100 psi	150 psi	250 psi	500 psi	1000 psi
60°	626. 364. 1F. 37	1.0	.20	.24	.31	.38	.49	.69	.98
	626. 404. 1F. 37	1.2	.31	.38	.49	.60	.77	1.1	1.6
	626. 464. 1F. 37	1.5	.50	.61	.79	.96	1.2	1.8	2.5
	626. 564. 1F. 37	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	626. 644. 1F. 37	2.5	1.2	1.5	2.0	2.4	3.1	4.4	6.2
	626. 724. 1F. 37	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
	626. 804. 1F. 37 626. 884. 1F. 37	4.0 5.0	3.1 4.9	3.8 6.0	4.9 7.8	6.0 9.6	7.8 12.3	11.0 17.4	15.5 25
	626, 964, 1F, 37	5.0 6.0	4.9 7.8	9.5	7.8 12.3	9.6 15.0	12.3	27	39
	627. 004. 1F. 37	6.0 7.0	7.8 9.8	9.5 12.0	12.3	18.9	24	35	49
	627. 004. 1F. 37	8.0	12.4	15.2	19.6	24	31	44	62
30°	626, 362, 1F, 37	1.0	.20	.24	.31	.38	.49	.69	.98
00	626. 482. 1F. 37	1.5	.50	.61	.79	.96	1.2	1.8	2.5
	626. 562. 1F. 37	2.0	.30	.95	1.2	1.5	1.9	2.7	3.9
	626. 642. 1F. 37	2.5	1.2	1.5	2.0	2.4	3.1	4.4	6.2
	626. 722. 1F. 37	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
	626. 802. 1F. 37	4.0	3.1	3.8	4.9	6.0	7.8	11.0	15.5
	626. 882. 1F. 37	5.0	4.9	6.0	7.8	9.6	12.3	17.4	25
15°	626. 361. 1F. 37	1.0	.20	.24	.31	.38	.49	.69	.98
	626. 561. 1F. 37	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	626. 721. 1F. 37	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
0 °	5SW. 300. 1F. 00	0.7	.09	.11	.14	.17	.22	.31	.44
	5SW. 320. 1F. 00	0.8	.13	.15	.20	.24	.32	.45	.63
	5SW. 340. 1F. 00	0.9	.15	.19	.25	.30	.39	.55	.77
	5SW. 360. 1F. 00	1.0	.20	.24	.31	.38	.49	.69	.98
	5SW. 390. 1F. 00	1.2	.31	.38	.49	.60	.77	1.1	1.6
	5SW. 460. 1F. 00	1.5	.50	.61	.79	.96	1.2	1.8	2.5
	5SW. 540. 1F. 00	2.0	.77	.95	1.2	1.5	1.9	2.7	3.9
	5SW. 620. 1F. 00	2.5	1.2	1.5	2.0	2.4	3.1	4.4	6.2
	5SW. 680. 1F. 00	3.0	2.0	2.4	3.1	3.8	4.9	6.9	9.8
	5SW. 780. 1F. 00	4.0	3.1	3.8	4.9	6.0	7.8	11.0	15.5
	5SW. 860. 1F. 00	5.0	4.9	6.0	7.8	9.6	12.3	17.4	25

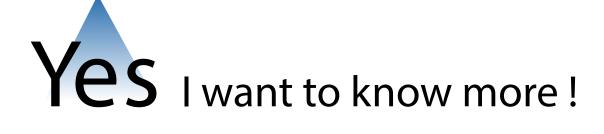
Conversion formula for the above series: $V_2 = V_1 - \sqrt{\frac{P_2}{P_2}}$



Part Number	Description	Stroke length	Shower size
10.900 Automatic Cleaning Device	Automatic regular cleaning of nozzles at programmable intervals; existing showers can be retrofitted with this device.	N/A	All sizes
<section-header></section-header>	Oscillator with electro- mechanical crank drive for side-to-side movement by a sliding block and axial guide rail.	200 mm Non-adjustable	2" to 4"
10.510 LSE-R Oscillator	Oscillator with electro- mechanical gear motor that rotates a double ball screw spindle which converts rotation into linear stroke movement.	2" to 3": 206.4 mm or 301.4 mm 4" to 6": 203.2 mm or 304.2 mm	One size for 2" to 3" diameter One size for 4" to 6" diameter
10.510 EC Oscillator	Oscillator with electro- mechanical step motor with a planetary gear reducer to drive a ball screw spindle.	1–200 mm Infinitely adjustable	2" to 6"
			STAMM

Part Number	Description	Stroke length	Shower size	
10.591 S Oscillator	Oscillator with oil-hydraulic drive with infinitely adjustable stroke speed provided by micro-flow control valve.	50–200 mm Infinitely adjustable 50–300 mm Infinitely adjustable	2" to 6"	
10.691 S Osciallator	Oscillator with oil-hydraulic drive with electronic oil flow control for automatic adjustment of stroke speed.	1–200 mm Infinitely adjustable 1–300 mm Infinitely adjustable	2" to 6"	
10.700 Oscillator bearing	Wear-resistant bearing made of stainless steel; installs in any position and fits all drive alternatives.	N/A	All sizes	

Lances and nozzle headers


Questionnaire Nozzle Arrangement

Name					
Company	Phone				
Address	Fax				
City	E-mail				
State/Province	Zip Code/Postal Code				
Description of application	1. Distribution of liquid				
	1.1 Droplet distribution in space				
	Atomization: 0 <				
	1.2 Liquid distribution on surface				
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
	1.3 Even distribution in one line on moving belt				
	$ \begin{array}{c c} & & & & & & & \\ \hline & & & & & \\ \hline & & & &$				
Operating conditions	1.4 Even distribution in one line with high power				
Atmosphere Pressure Temperature	│				
	1.5 Application: Spraying on vertical surfaces				
	GO GO GO GO GO GUI cone nozzles) Glat fan nozzles)				

1.6 Other applications

2. Kind of distribution
Full cone
□ Hollow cone
Flat fan
□ Solid stream
Spray angle □ 0° □ 15° □ 30° □ 45° □ 60° □ 90° □ 120°
3. Liquid to atomize
Volume of flowgpm
Ingredients
Density Viscosity
Solid material content in %
Liquid temperature in °F
4. Further plant equipment
4.1 Liquid Pump psi
Volume of flow gpm
4.2 Possibility of twin fluid atomization
Assisting agent
Compressed air Pressure/Volume
□ Steam Pressure/Volume
Others
Temperature of assisting agent °F

Complete below and fax to: 630-377-6657 You'll immediately receive detailed information.

Send me information on the following:	Please call me
Industrial brochures	My telephone number is:
Precision Spray Nozzles for Tank and Equipment Cleaning	
Precision Spray Nozzles for the Food and Beverage Industry	We want to use nozzles from Lechler
Precision Spray Nozzles for the Chemical Industry	for the following application:
Precision Spray Nozzles for the Surface Technology Industry	
\Box Nozzles and Accessories for Compressed Air	
□ VarioSpray II	
Environmental brochures	We belong to the following industry:
VarioCool [®] Gas Conditioning Systems	
Spillback Nozzle Lances	
Twinfluid Nozzle Lances for Gas Conditioning	
□ VarioClean NOx	
☐ TwinAbsorb [™] Advanced Technology in Wet FGD	Our address
☐ Online Cleaning System — LOC [™]	
Metallurgical brochures	Name
Nozzles and Systems for the Metallurgical Industry	Company/Department
□ Nozzles and Cooling Solutions for Continuous	
Casting	Address
Precision Nozzles and Systems for Roll Cooling	City/State/Zip
Nozzles for Hydromechanical Descaling	
SCALEMASTER [®] – the Standard in Descaling Techology	Telephone
SELECTOSPRAY [®] Roll Cooling System	I ax
Billetcooler FLEX®	E-mail

VISIT OUR WEB SITE www.LechlerUSA.com

ENGINEERING YOUR SPRAY SOLUTION

LECHLER WORLD-WIDE

Lechler, Inc. · Precision Nozzles · Nozzle Systems 445 Kautz Road, St. Charles, IL 60174 · Phone (800) 777-2926 · Fax (630) 377-6657 · info@LechlerUSA.com · www.LechlerUSA.com

ASEAN: Lechler Spray Technology Sdn. Bhd. · No. 23, Jalan Teknologi 3/3A · Taman Sains Selangor 1 · Kota Damansara, PJU 5 · 47810 Petaling Jaya · Malaysia · info@lechler.com.my Belgium: Lechler S.A./N.V. · Avenue Mercator, 6 · 1300 Wavre · Phone: +32 10 225022 · Fax: +32 10 243901 · info@lechler.be China: Lechler Intl. Trad. Co. Ltd. · Beijing · Rm. 418 Landmark Tower · No. 8 Dong San Huan Bei Lu · Phone: +86 10 84537968, Fax: +86 10 84537458 · info@lechler.com.cn Finland: Lechler Oy · Jäspilänkatu 18 · 04250 Kerava · Phone: +358 800 · Fax: +358 207 856880 · Fax: +361 1 49882600 · info@lechler.fr France: Lechler France, S.A. · Båt. CAP2 · 66-72, Rue Marceau · 93558 Montreuil · Phone: +33 1 49882600 · Fax: +33 1 49882600 · info@lechler.fr Germany: Lechler GmbH · PO Box 13 23 · 72544 Metzingen · Phone: +49 7123 962-0 · Fax: (49) 7123 962-444 · info@lechler.com India: Lechler Ltd. · 1 Fell Street, Newhall · Sheffield, S9 2TP · Phone: +44 114 2492020 · Fax: +44 114 2493600 · info@lechler.com India: Lechler Ltd. · 1 Fell Street, Newhall · Sheffield, S9 2TP · Phone: +44 114 2492020 · Fax: +44 114 2493600 · info@lechler.com India: Lechler Chrolip Vrt. Ltd. · Plot B-2 · Main Road · Wagle Industrial Estate · Thane (W) · 400604 · Phone: +91 22 40634444 · Fax: +91 22 40634498 · lechler@lechlerindia.com Italy: Lechler Spray Technology S.r.l. · Via Don Dossetti, 2 · 20080 Carpiano (Mi) · Phone: +39 02 98859027 · Fax: +30 0 9815647 · info@lechleritalia.com Spain: Lechler SA. · Avda. Princes 7 · Oficina B7, Editioi Inbia I · 28700 San Sebastăi ne los Reyes, Madrid · Phone: +34 91 6586346 · Fax: +34 91 6586347 · info@lechler.es Sweden: Lechler AB · Kungsängsvägen 31 B · 753 23 Uppsala · Phone: +46 18 167030 · Fax: +46 18 167031 · info@lechler.se